Topology of a dissipative spin: Dynamical Chern number, bath-induced nonadiabaticity, and a quantum dynamo effect

Thumbnail Image
Date
2017-02-01
Authors
Henriet, Loıc
Sclocchi, Antonio
Orth, Peter
Le Hur, Karyn
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Orth, Peter
Associate Professor
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Physics and Astronomy
Physics and astronomy are basic natural sciences which attempt to describe and provide an understanding of both our world and our universe. Physics serves as the underpinning of many different disciplines including the other natural sciences and technological areas.
Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryPhysics and Astronomy
Abstract

We analyze the topological deformations of the ground state manifold of a quantum spin-1/2 in a magnetic field H = H(sin theta cos phi, sin theta sin phi cos theta) induced by a coupling to an ohmic quantum dissipative environment at zero temperature. From Bethe ansatz results and a variational approach, we confirm that the Chern number associated with the geometry of the reduced spin ground state manifold is preserved in the delocalized phase for alpha < 1. We report a divergence of the Berry curvature at alpha(c) = 1 for magnetic fields aligned along the equator theta = pi/2. This divergence is caused by the complete quenching of the transverse magnetic field by the bath associated with a gap closing that occurs at the localization Kosterlitz-Thouless quantum phase transition in this model. Recent experiments in quantum circuits have engineered nonequilibrium protocols to access topological properties from a measurement of a dynamical Chern number defined via the out-of-equilibrium spin expectation values. Applying a numerically exact stochastic Schrodinger approach we find that, for a fixed field sweep velocity theta(t) = vt, the bath induces a crossover from ( quasi) adiabatic to nonadiabatic dynamical behavior when the spin bath coupling a increases. We also investigate the particular regime H/omega(c) << v/H << 1 with large bath cutoff frequency.c, where the dynamical Chern number vanishes already at alpha = 1/2. In this regime, the mapping to an interacting resonance level model enables us to analytically describe the behavior of the dynamical Chern number in the vicinity of alpha = 1/2. We further provide an intuitive physical explanation of the bath-induced breakdown of adiabaticity in analogy to the Faraday effect in electromagnetism. We demonstrate that the driving of the spin leads to the production of a large number of bosonic excitations in the bath, which strongly affect the spin dynamics. Finally, we quantify the spin-bath entanglement and formulate an analogy with an effective model at thermal equilibrium.

Comments

This article is published as Henriet, Loïc, Antonio Sclocchi, Peter P. Orth, and Karyn Le Hur. "Topology of a dissipative spin: Dynamical Chern number, bath-induced nonadiabaticity, and a quantum dynamo effect." Physical Review B 95, no. 5 (2017): 054307. DOI: 10.1103/PhysRevB.95.054307. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Sun Jan 01 00:00:00 UTC 2017
Collections