Maximum Generic Nullity of a Graph
Maximum Generic Nullity of a Graph
dc.contributor.author | Hogben, Leslie | |
dc.contributor.author | Shader, Bryan | |
dc.contributor.author | Hogben, Leslie | |
dc.contributor.department | Mathematics | |
dc.date | 2018-02-18T06:08:02.000 | |
dc.date.accessioned | 2020-06-30T06:01:01Z | |
dc.date.available | 2020-06-30T06:01:01Z | |
dc.date.copyright | Fri Jan 01 00:00:00 UTC 2010 | |
dc.date.issued | 2010-02-01 | |
dc.description.abstract | <p>For a graph G of order n, the maximum nullity of G is defined to be the largest possible nullity over all real symmetric n×n matrices A whose (i,j)th entry (for i≠j) is nonzero whenever {i,j} is an edge in G and is zero otherwise. Maximum nullity and the related parameter minimum rank of the same set of matrices have been studied extensively. A new parameter, maximum generic nullity, is introduced. Maximum generic nullity provides insight into the structure of the null-space of a matrix realizing maximum nullity of a graph. It is shown that maximum generic nullity is bounded above by edge connectivity and below by vertex connectivity. Results on random graphs are used to show that as n goes to infinity almost all graphs have equal maximum generic nullity, vertex connectivity, edge connectivity, and minimum degree.</p> | |
dc.description.comments | <p>This is a manuscript of an article from <em>Linear Algebra and its Applications </em>432 (2010): 857, doi:<a href="http://dx.doi.org/10.1016/j.laa.2009.09.025" target="_blank">10.1016/j.laa.2009.09.025</a>. Posted with permission.</p> | |
dc.format.mimetype | application/pdf | |
dc.identifier | archive/lib.dr.iastate.edu/math_pubs/88/ | |
dc.identifier.articleid | 1079 | |
dc.identifier.contextkey | 9889696 | |
dc.identifier.s3bucket | isulib-bepress-aws-west | |
dc.identifier.submissionpath | math_pubs/88 | |
dc.identifier.uri | https://dr.lib.iastate.edu/handle/20.500.12876/54687 | |
dc.language.iso | en | |
dc.source.bitstream | archive/lib.dr.iastate.edu/math_pubs/88/2010_Hogben_MaximumGeneric.pdf|||Sat Jan 15 02:17:08 UTC 2022 | |
dc.source.uri | 10.1016/j.laa.2009.09.025 | |
dc.subject.disciplines | Algebra | |
dc.subject.disciplines | Discrete Mathematics and Combinatorics | |
dc.subject.keywords | Minimum rank | |
dc.subject.keywords | Maximum nullity | |
dc.subject.keywords | Maximum corank | |
dc.subject.keywords | Maximum generic nullity | |
dc.subject.keywords | Graph | |
dc.subject.keywords | Rank | |
dc.subject.keywords | Nullity | |
dc.subject.keywords | Corank | |
dc.subject.keywords | Symmetric matrix | |
dc.subject.keywords | Orthogonal representation | |
dc.title | Maximum Generic Nullity of a Graph | |
dc.type | article | |
dc.type.genre | article | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 0131698a-00df-41ad-8919-35fb630b282b | |
relation.isOrgUnitOfPublication | 82295b2b-0f85-4929-9659-075c93e82c48 |
File
Original bundle
1 - 1 of 1
- Name:
- 2010_Hogben_MaximumGeneric.pdf
- Size:
- 260.99 KB
- Format:
- Adobe Portable Document Format
- Description: