Salt-Induced Liquid–Liquid Phase Separation and Interfacial Crystal Formation in Poly(N-isopropylacrylamide)-Capped Gold Nanoparticles

dc.contributor.author Londoño-Calderon, Alejandra
dc.contributor.author Wang, Wenjie
dc.contributor.author Lawrence, Jack
dc.contributor.author Bu, Wei
dc.contributor.author Vaknin, David
dc.contributor.author Prozorov, Tanya
dc.contributor.department Ames National Laboratory
dc.contributor.department Physics and Astronomy
dc.date 2021-03-13T06:27:19.000
dc.date.accessioned 2021-04-29T23:39:23Z
dc.date.available 2021-04-29T23:39:23Z
dc.date.embargo 2022-03-01
dc.date.issued 2021-03-01
dc.description.abstract <p>We report on the dynamic response of aqueous solution containing poly(<em>N</em>-isopropylacrylamide)-capped gold (pNIPAM-capped Au) nanoparticles to the introduction of NaCl. The addition of NaCl increases the density of the solution and prompts the liquid–liquid phase separation process, confining the polymer to a lower-density salt-deficient aqueous phase. As the pNIPAM-occupied aqueous phase becomes excluded from the higher-density NaCl-rich bulk solution, the pNIPAM-capped Au nanoparticles follow liquid–liquid phase separation and reside on the surface of the formed pNIPAM-filled globes at the interface between the NaCl-rich bulk solution and the pNIPAM-containing solution, exhibiting a hexagonal packing with interparticle distance of ∼23 nm. Driven by the minimization of hydrophobic interactions, the buoyant Au-decorated globular assemblies filled with aqueous pNIPAM solution escape to the air/water interface, collapse at the interface, and form planar hexagonal crystalline domains of different sizes, depending on NaCl concentration. At low NaCl concentrations, the collapse of the Au-decorated aqueous pNIPAM-filled globes at the air/water interface produces an interfacial two-dimensional (2D) hexagonal lattice of pNIPAM-capped Au nanoparticles with an interparticle distance of 25–27 nm. The increase in NaCl concentration leads to a formation of smaller globes escaping to, and collapsing at the air/water interface and yielding smaller two-dimensional hexagonal domains.</p>
dc.identifier archive/lib.dr.iastate.edu/ameslab_manuscripts/846/
dc.identifier.articleid 1855
dc.identifier.contextkey 22041399
dc.identifier.s3bucket isulib-bepress-aws-west
dc.identifier.submissionpath ameslab_manuscripts/846
dc.identifier.uri https://dr.lib.iastate.edu/handle/20.500.12876/104488
dc.language.iso en
dc.relation.ispartofseries IS-J 10439
dc.source.bitstream archive/lib.dr.iastate.edu/ameslab_manuscripts/846/IS_J_10439.pdf|||Sat Jan 15 02:11:48 UTC 2022
dc.source.uri 10.1021/acs.jpcc.0c11307
dc.subject.disciplines Nanoscience and Nanotechnology
dc.subject.disciplines Physical Chemistry
dc.subject.disciplines Polymer Chemistry
dc.subject.keywords Interfaces
dc.subject.keywords Metal nanoparticles
dc.subject.keywords Thermoresponsive polymers
dc.subject.keywords Nanoparticles
dc.subject.keywords Lattices
dc.title Salt-Induced Liquid–Liquid Phase Separation and Interfacial Crystal Formation in Poly(N-isopropylacrylamide)-Capped Gold Nanoparticles
dc.type article
dc.type.genre article
dspace.entity.type Publication
relation.isOrgUnitOfPublication 25913818-6714-4be5-89a6-f70c8facdf7e
relation.isOrgUnitOfPublication 4a05cd4d-8749-4cff-96b1-32eca381d930
File
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
IS_J_10439.pdf
Size:
1.08 MB
Format:
Adobe Portable Document Format
Description:
Collections