Anomalous effects of Sc substitution and processing on magnetism and structure of (Gd1−xScx)5Ge4

Date
2018-11-03
Authors
Liu, Jun
Mudryk, Yaroslav
Smetana, Volodymyr
Mudring, Anja-Verena
Pecharsky, Vitalij
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Ames Laboratory
Organizational Unit
Chemistry
Organizational Unit
Journal Issue
Series
Department
Ames LaboratoryMaterials Science and EngineeringChemistry
Abstract

The kinetic arrest observed in the parent Gd5Ge4 gradually vanishes when a small fraction (x = 0.025, 0.05 and 0.10) of Gd is replaced by Sc in (Gd1−xScx)5Ge4, and the magnetic ground state changes from antiferromagnetic (AFM) to ferromagnetic (FM). A first order phase transition coupled with the FM-AFM transition occurs at TC = 41 K for x = 0.05 and at TC = 53 K for x = 0.10 during heating in applied magnetic field of 1 kOe, and the thermal hysteresis is near 10 K. The first-order magnetic transition is coupled with the structural Sm5Ge4-type to Gd5Si4-type transformation. The magnetization measured as a function of applied magnetic field shows sharp metamagnetic-like behavior. At the same time, the AFM to paramagnetic transition in (Gd1−xScx)5Ge4 with x = 0.10, is uncharacteristically broad indicating development of strong short-range AFM correlations above the Néel temperature. Comparison of the magnetization data of bulk, powdered, and metal-varnish composite samples of (Gd0.95Sc0.05)5Ge4 shows that mechanical grinding and fabrication of a composite have little effect on the temperature of the first-order transformation, but short-range ordering and AFM/FM ratio below TC are surprisingly strongly affected.

Comments
Description
Keywords
Citation
DOI
Collections