Quantitative assessment of kernel set and risk of out-crossing in maize based on flowering dynamics

dc.contributor.advisor Mark E. Westgate
dc.contributor.author Fonseca, Agustin
dc.contributor.department Agronomy
dc.date 2018-08-24T23:01:06.000
dc.date.accessioned 2020-06-30T07:14:18Z
dc.date.available 2020-06-30T07:14:18Z
dc.date.copyright Thu Jan 01 00:00:00 UTC 2004
dc.date.issued 2004-01-01
dc.description.abstract <p>Pollination in maize can occur only if airborne pollen shed by the staminate flowers on the tassel is captured by the stigmas of the pistillate flowers borne on the ear. Since maize domestication, and especially with the introduction of hybrid seed production, many attempts have been made to control pollination to ensure maximum kernel set and high levels of genetic purity. The central hypothesis of this dissertation is that pollen shed and silk emergence are predictable processes, which can be simply quantified and used to characterize the capacity of the male inbreds to produce pollen and the ability of the females to extrude silks. This information coupled with an assessment of pollen viability, could be used to model kernel set under varying conditions and to predict pollen drift and the risk of genetic contamination from one field to another. Chapter 2 presents a novel method to quantify the timing and intensity of pollen shed using passive pollen traps and capitalizing on the capacity of pollen to fluoresce. Chapter 3 provides another novel method of relating genetic differences in pollen production to the morphological characteristics of plant tassels. Chapter 4 describes a mathematical model developed to simulate potential kernel set from seasonal dynamics of pollen shed and silk exsertion. Chapter 5 successfully applies the model to hybrid seed production fields and demonstrates its utility to define management strategies that would optimize seed production. Chapter 6 presents an indirect approach to assess loss of pollen viability during its transport in air. Quantitative relations between environmental conditions during pollen dispersal (i.e. temperature, relative humidity) and pollen desiccation that can be used to assess pollen viability are shown. Finally, chapter 7 presents a quantitative approach to assess out-crossing and self-pollination risks based exclusively on the flowering characteristics of a given field.</p>
dc.format.mimetype application/pdf
dc.identifier archive/lib.dr.iastate.edu/rtd/1161/
dc.identifier.articleid 2160
dc.identifier.contextkey 6090659
dc.identifier.doi https://doi.org/10.31274/rtd-180813-13185
dc.identifier.s3bucket isulib-bepress-aws-west
dc.identifier.submissionpath rtd/1161
dc.identifier.uri https://dr.lib.iastate.edu/handle/20.500.12876/64886
dc.language.iso en
dc.source.bitstream archive/lib.dr.iastate.edu/rtd/1161/r_3158334.pdf|||Fri Jan 14 18:54:27 UTC 2022
dc.subject.disciplines Agricultural Science
dc.subject.disciplines Agriculture
dc.subject.disciplines Agronomy and Crop Sciences
dc.subject.disciplines Plant Sciences
dc.subject.keywords Agronomy
dc.subject.keywords Crop production and physiology
dc.title Quantitative assessment of kernel set and risk of out-crossing in maize based on flowering dynamics
dc.type article
dc.type.genre dissertation
dspace.entity.type Publication
relation.isOrgUnitOfPublication fdd5c06c-bdbe-469c-a38e-51e664fece7a
thesis.degree.level dissertation
thesis.degree.name Doctor of Philosophy
File
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
r_3158334.pdf
Size:
3.35 MB
Format:
Adobe Portable Document Format
Description: