On Vertex Identifying Codes For Infinite Lattices

dc.contributor.advisor Ryan Martin
dc.contributor.author Stanton, Brendon
dc.contributor.department Mathematics
dc.date 2018-08-11T07:12:38.000
dc.date.accessioned 2020-06-30T02:39:50Z
dc.date.available 2020-06-30T02:39:50Z
dc.date.copyright Sat Jan 01 00:00:00 UTC 2011
dc.date.embargo 2013-06-05
dc.date.issued 2011-01-01
dc.description.abstract <p>For any position integer r, an r-identifying code on a graph G is a set C which is a subset of V(G) such that the intersection of the radius-r closed neighborhood with C is nonempty and pairwise distinct. For a finite graph, the density of a code is |C|/|V(G)|, which extends naturally to a definition of density on certain infinite graphs which are locally finite. This thesis explores the concept of density on certain infinite graphs, each of which have a representation on an n-dimensional lattice and finds some new bounds for these densities.</p>
dc.format.mimetype application/pdf
dc.identifier archive/lib.dr.iastate.edu/etd/12019/
dc.identifier.articleid 3035
dc.identifier.contextkey 2808233
dc.identifier.doi https://doi.org/10.31274/etd-180810-1453
dc.identifier.s3bucket isulib-bepress-aws-west
dc.identifier.submissionpath etd/12019
dc.identifier.uri https://dr.lib.iastate.edu/handle/20.500.12876/26222
dc.language.iso en
dc.source.bitstream archive/lib.dr.iastate.edu/etd/12019/Stanton_iastate_0097E_11795.pdf|||Fri Jan 14 19:11:07 UTC 2022
dc.subject.disciplines Mathematics
dc.subject.keywords Density
dc.subject.keywords Graph
dc.subject.keywords Graph Theory
dc.subject.keywords Identifying Code
dc.subject.keywords Infinite Grid
dc.subject.keywords Infinite Lattice
dc.title On Vertex Identifying Codes For Infinite Lattices
dc.type article
dc.type.genre dissertation
dspace.entity.type Publication
relation.isOrgUnitOfPublication 82295b2b-0f85-4929-9659-075c93e82c48
thesis.degree.level dissertation
thesis.degree.name Doctor of Philosophy
File
Original bundle
Now showing 1 - 1 of 1
Name:
Stanton_iastate_0097E_11795.pdf
Size:
791.42 KB
Format:
Adobe Portable Document Format
Description: