Facile Fabrication of Hierarchical MOF–Metal Nanoparticle Tandem Catalysts for the Synthesis of Bioactive Molecules

dc.contributor.author Chen, Jingwen
dc.contributor.author Zhang, Biying
dc.contributor.author Qi, Long
dc.contributor.author Huang, Wenyu
dc.contributor.author Pei, Yuchen
dc.contributor.author Nie, Renfeng
dc.contributor.author Heintz, Patrick
dc.contributor.author Luan, Xuechen
dc.contributor.author Bao, Zongbi
dc.contributor.author Yang, Qiwei
dc.contributor.author Ren, Qilong
dc.contributor.author Zhang, Zhiguo
dc.contributor.author Huang, Wenyu
dc.contributor.department Ames Laboratory
dc.contributor.department Chemistry
dc.date 2020-06-10T21:16:43.000
dc.date.accessioned 2020-06-30T01:17:44Z
dc.date.available 2020-06-30T01:17:44Z
dc.date.copyright Wed Jan 01 00:00:00 UTC 2020
dc.date.issued 2020-05-20
dc.description.abstract <p>Multifunctional metal–organic frameworks (MOFs) that possess permanent porosity are promising catalysts in organic transformation. Herein, we report the construction of a hierarchical MOF functionalized with basic aliphatic amine groups and polyvinylpyrrolidone-capped platinum nanoparticles (Pt NPs). The postsynthetic covalent modification of organic ligands increases basic site density in the MOF and simultaneously introduces mesopores to create a hierarchically porous structure. The multifunctional MOF is capable of catalyzing a sequential Knoevenagel condensation–hydrogenation–intramolecular cyclization reaction. The unique selective reduction of the nitro group to intermediate hydroxylamine by Pt NPs supported on MOF followed by intramolecular cyclization with a cyano group affords an excellent yield (up to 92%) to the uncommon quinoline <em>N</em>-oxides over quinolines. The hierarchical MOF and polyvinylpyrrolidone capping agent on Pt NPs synergistically facilitate the enrichment of substrates and thus lead to high activity in the reduction–intramolecular cyclization reaction. The bioactivity assay indicates that the synthesized quinoline <em>N</em>-oxides evidently inhibit the proliferation of lung cancer cells. Our findings demonstrate the feasibility of MOF-catalyzed direct synthesis of bioactive molecules from readily available compounds under mild conditions.</p>
dc.description.comments <p>This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication in <em>ACS Applied Materials & Interfaces</em>, copyright © American Chemical Society after peer review. To access the final edited and published work see DOI: <a href="https://doi.org/10.1021/acsami.0c05344" target="_blank">10.1021/acsami.0c05344</a>. Posted with permission.</p>
dc.format.mimetype application/pdf
dc.identifier archive/lib.dr.iastate.edu/chem_pubs/1240/
dc.identifier.articleid 2245
dc.identifier.contextkey 17988626
dc.identifier.s3bucket isulib-bepress-aws-west
dc.identifier.submissionpath chem_pubs/1240
dc.identifier.uri https://dr.lib.iastate.edu/handle/20.500.12876/14554
dc.language.iso en
dc.source.bitstream archive/lib.dr.iastate.edu/chem_pubs/1240/2020_HuangWenyu_FacileFabrication.pdf|||Fri Jan 14 19:21:02 UTC 2022
dc.source.uri 10.1021/acsami.0c05344
dc.subject.disciplines Materials Chemistry
dc.subject.disciplines Nanoscience and Nanotechnology
dc.subject.keywords tandem reaction
dc.subject.keywords metal−organic frameworks
dc.subject.keywords hierarchical pore
dc.subject.keywords heterogeneous catalysis
dc.subject.keywords bioactivity
dc.subject.keywords quinoline N-oxides
dc.title Facile Fabrication of Hierarchical MOF–Metal Nanoparticle Tandem Catalysts for the Synthesis of Bioactive Molecules
dc.type article
dc.type.genre article
dspace.entity.type Publication
relation.isAuthorOfPublication 6acd59cc-28ec-46dd-8bf0-51bcc56d79f9
relation.isOrgUnitOfPublication 25913818-6714-4be5-89a6-f70c8facdf7e
relation.isOrgUnitOfPublication 42864f6e-7a3d-4be3-8b5a-0ae3c3830a11
Original bundle
Now showing 1 - 1 of 1
1.17 MB
Adobe Portable Document Format