Kinetics of the γ–δ phase transition in energetic nitramine-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine

Thumbnail Image
Bowlan, P.
Henson, B. F.
Smilowitz, L.
Levitas, Valery
Suvorova, N.
Oschwald, D.
Major Professor
Committee Member
Journal Title
Journal ISSN
Volume Title
Research Projects
Organizational Units
Organizational Unit
Organizational Unit
Organizational Unit
Mechanical Engineering
The Department of Mechanical Engineering at Iowa State University is where innovation thrives and the impossible is made possible. This is where your passion for problem-solving and hands-on learning can make a real difference in our world. Whether you’re helping improve the environment, creating safer automobiles, or advancing medical technologies, and athletic performance, the Department of Mechanical Engineering gives you the tools and talent to blaze your own trail to an amazing career.
Organizational Unit
Materials Science and Engineering
Materials engineers create new materials and improve existing materials. Everything is limited by the materials that are used to produce it. Materials engineers understand the relationship between the properties of a material and its internal structure — from the macro level down to the atomic level. The better the materials, the better the end result — it’s as simple as that.
Journal Issue
Is Version Of
Aerospace EngineeringAmes National LaboratoryMechanical EngineeringMaterials Science and Engineering

The solid, secondary explosive nitramine-octahydro-1,3,5,7-tetranitro-1,3,5,7 or HMX has four different stable polymorphs which have different molecular conformations, crystalline structures, and densities, making structural phase transitions between these nontrivial. Previous studies of the kinetics of the βδ HMX structural transition found this to happen by a nucleation and growth mechanism, where growth was governed by the heat of fusion, or melting, even though the phase transition temperature is more than 100 K below the melting point. A theory known as virtual melting could easily justify this since the large volume difference in the two phases creates a strain at their interface that can lower the melting point to the phase transition temperature through a relaxation of the elastic energy. To learn more about structural phase transitions in organic crystalline solids and virtual melting, here we use time-resolved X-ray diffraction to study another structural phase transition in HMX, γδ. Again, second order kinetics are observed which fit to the same nucleation and growth model associated with growth by melting even though the volume change in this transition is too small to lower the melting point by interfacial strain. To account for this, we present a more general model illustrating that melting over a very thin layer at the interface between the two phases reduces the total interfacial energy and is therefore thermodynamically favorable and can drive the structural phase transition in the absence of large volume changes. Our work supports the idea that virtual melting may be a more generally applicable mechanism for structural phase transitions in organic crystalline solids.


This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Bowlan, P., B. F. Henson, L. Smilowitz, V. I. Levitas, N. Suvorova, and D. Oschwald. "Kinetics of the γ–δ phase transition in energetic nitramine-octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine." The Journal of Chemical Physics 150, no. 6 (2019): 064705, and may be found at DOI: 10.1063/1.5080010. Posted with permission.

Tue Jan 01 00:00:00 UTC 2019