Allosteric regulation of mammalian fructose-1,6-bisphosphatase

Date
2013-01-01
Authors
Gao, Yang
Major Professor
Advisor
Richard B. Honzatko
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Journal Issue
Series
Department
Biochemistry, Biophysics and Molecular Biology
Abstract

Fructose-1, 6-bisphosphate (D-fructose-1, 6-bisphosphate 1-phosphohydrolase; EC 3. 1. 3; FBPase) is an essential regulatory enzyme in gluconeogenesis and has long been considered as a drug target towards type II diabete. In mammalian, the activity of FBPase is regulated by AMP and fructose 2,6-bisphosphate (Fru-2,6-P2). AMP is an allosteric inhibitor that binds to FBPase with positive coopertivity, and Fru-2,6-P2 is an active site inhibitor which is up-regulated by hormone. Despite the 30 Å distance between their binding sites, both of AMP and Fru-2,6-P2 transform FBPase from active R-state to inactive T-state. Large conformational rearrangements are coupled to the R- to T-state transition: subunit pairs within tetrameric FBPase rotate over ten degree relative to each other and an essential catalytic loop (residue 50-72) is forced away from active site. Mutagenesis, kinetics, crystallography and molecular dynamics simulations are combined here to investigate structure-function relationship of FBPase. Tetramer is a functional unit of FBPase; disturbing the tetrameric packing of FBPase leads to loss of AMP cooperativity. A hydrophobic cavity at the center of FBPase tetramer is populated by well-defined clathrate-like waters. The cavity together with waters in it is shown to be thermodynamic determinant for quaternary states of FBPase. Kinetics and crystallographic studies indicate a negative correlation between subunit pair rotation and relative activity of FBPase. Filling the cavity by point mutations selectively hinges subunit pair rotation induced by Fru-2,6-P2 and largely reduce the synergism between AMP and Fru-2,6-P2. Mutation that stops subunit pair rotations causes complete loss of AMP inhibition but retains Fru-2,6-P2 inhibition; whereas mutation promotes the subunit pair rotation turn off cooperative binding of AMP as well as AMP/Fru-2,6-P2 synergism. MD simulation together with crystal structures of intermediate states of FBPase reveals correlation between subunit pair rotation and status of loop 50-72. Moreover, knowledge of allosteric regulation of porcine liver FBPase and FBPase from Escherichia coli was used predict the regulatory properties of all Type-I FBPases, for which sequence information is available. Subsequent expression of FBPase from a bacterial organism, predicted to have the regulatory properties of a eukaryotic FBPase, proved correct and established a basis for the evolution of regulatory properties for all Type-I FBPases.

Comments
Description
Keywords
Citation
DOI
Source