A Bayesian Hierarchical Model for Evaluating Forensic Footwear Evidence

Thumbnail Image
Date
2019-06-12
Authors
Spencer, Neil
Murray, Jared
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Organizational Unit
Center for Statistics and Applications in Forensic Evidence
The Center for Statistics and Applications in Forensic Evidence (CSAFE) carries out research on the scientific foundations of forensic methods, develops novel statistical methods and transfers knowledge and technological innovations to the forensic science community. We collaborate with more than 80 researchers and across six universities to drive solutions to support our forensic community partners with accessible tools, open-source databases and educational opportunities.
Journal Issue
Is Version Of
Versions
Series
Abstract

When a latent shoeprint is discovered at a crime scene, forensic analysts inspect it for distinctive patterns of wear such as scratches and holes (known as accidentals) on the source shoe's sole. If its accidentals correspond to those of a suspect's shoe, the print can be used as forensic evidence to place the suspect at the crime scene. The strength of this evidence depends on the random match probability---the chance that a shoe chosen at random would match the crime scene print's accidentals. Evaluating random match probabilities requires an accurate model for the spatial distribution of accidentals on shoe soles. A recent report by the President's Council of Advisors in Science and Technology criticized existing models in the literature, calling for new empirically validated techniques. We respond to this request with a new spatial point process model for accidental locations, developed within a hierarchical Bayesian framework. We treat the tread pattern of each shoe as a covariate, allowing us to pool information across large heterogeneous databases of shoes. Existing models ignore this information; our results show that including it leads to significantly better model fit. We demonstrate this by fitting our model to one such database.

Comments

This is a pre-print published as Spencer, Neil A., and Jared S. Murray. "A Bayesian Hierarchical Model for Evaluating Forensic Footwear Evidence." arXiv preprint arXiv:1906.05244 (2019). Posted with permission of CSAFE.

Description
Keywords
Citation
DOI
Source
Copyright
Tue Jan 01 00:00:00 UTC 2019
Collections