Using the negative log-gamma distribution for Bayesian system reliability assessment

Thumbnail Image
Date
2012-01-01
Authors
Zoh, Roger
Major Professor
Advisor
Alyson G. Wilson
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Abstract

Modeling system reliability over time when binary data are collected both at the system and component level has been the subject of many papers. In a series system, it is often assumed that component reliability is linear in time through some link function. Often little or no information exists on the parameters of the linear regression, and in a Bayesian analysis they are modeled using diffuse priors. This can have unintended consequences for the analysis, specifically for the extrapolation of component and system reliabilities. In this work, we consider negative log-gamma (NLG) distributions for specifying prior information on reliability. We first show how our method can be implemented to model the reliability of a series system at a given time and extend to the case where we are interested in modeling reliability over time. We then discuss methods of estimation for the parameters of the NLG prior based on quantiles obtained from expert knowledge. Finally, we propose a component selection approach to help identify active and inactive components. The component selection approach leads to reasonable estimates of trend in the reliability of a large system when only a few components among many actually contribute to the trend.

Series Number
Journal Issue
Is Version Of
Versions
Series
Academic or Administrative Unit
Type
dissertation
Comments
Rights Statement
Copyright
Sun Jan 01 00:00:00 UTC 2012
Funding
Subject Categories
Supplemental Resources
Source