Use of machine learning algorithms to classify binary protein sequences as highly-designable or poorly-designable
Date
Authors
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Journal Issue
Is Version Of
Versions
Series
Department
Abstract
Background
By using a standard Support Vector Machine (SVM) with a Sequential Minimal Optimization (SMO) method of training, Naïve Bayes and other machine learning algorithms we are able to distinguish between two classes of protein sequences: those folding to highly-designable conformations, or those folding to poorly- or non-designable conformations.
Results
First, we generate all possible compact lattice conformations for the specified shape (a hexagon or a triangle) on the 2D triangular lattice. Then we generate all possible binary hydrophobic/polar (H/P) sequences and by using a specified energy function, thread them through all of these compact conformations. If for a given sequence the lowest energy is obtained for a particular lattice conformation we assume that this sequence folds to that conformation. Highly-designable conformations have many H/P sequences folding to them, while poorly-designable conformations have few or no H/P sequences. We classify sequences as folding to either highly – or poorly-designable conformations. We have randomly selected subsets of the sequences belonging to highly-designable and poorly-designable conformations and used them to train several different standard machine learning algorithms.
Conclusion
By using these machine learning algorithms with ten-fold cross-validation we are able to classify the two classes of sequences with high accuracy – in some cases exceeding 95%.
Comments
This article is published as Peto, Myron, Andrzej Kloczkowski, Vasant Honavar, and Robert L. Jernigan. "Use of machine learning algorithms to classify binary protein sequences as highly-designable or poorly-designable." BMC bioinformatics 9, no. 1 (2008): 487. doi: 10.1186/1471-2105-9-487. Posted with permission.