Mathematical modeling and simulation in animal health. Part III: Using nonlinear mixed-effects to characterize and quantify variability in drug pharmacokinetics

Thumbnail Image
Bon, C.
Toutain, P. L.
Concordet, D.
Gehring, R.
Martin-Jimenez, T.
Smith, J.
Pelligand, L.
Martinez, M.
Major Professor
Committee Member
Journal Title
Journal ISSN
Volume Title
Smith, Joe
Affiliate Professor
Mochel, Jonathan
Research Projects
Organizational Units
Organizational Unit
Biomedical Sciences

The Department of Biomedical Sciences aims to provide knowledge of anatomy and physiology in order to understand the mechanisms and treatment of animal diseases. Additionally, it seeks to teach the understanding of drug-action for rational drug-therapy, as well as toxicology, pharmacodynamics, and clinical drug administration.

The Department of Biomedical Sciences was formed in 1999 as a merger of the Department of Veterinary Anatomy and the Department of Veterinary Physiology and Pharmacology.

Dates of Existence

Related Units

  • College of Veterinary Medicine (parent college)
  • Department of Veterinary Anatomy (predecessor, 1997)
  • Department of Veterinary Physiology and Pharmacology (predecessor, 1997)

Organizational Unit
Veterinary Diagnostic and Production Animal Medicine
The mission of VDPAM is to educate current and future food animal veterinarians, population medicine scientists and stakeholders by increasing our understanding of issues that impact the health, productivity and well-being of food and fiber producing animals; developing innovative solutions for animal health and food safety; and providing the highest quality, most comprehensive clinical practice and diagnostic services. Our department is made up of highly trained specialists who span a wide range of veterinary disciplines and species interests. We have faculty of all ranks with expertise in diagnostics, medicine, surgery, pathology, microbiology, epidemiology, public health, and production medicine. Most have earned certification from specialty boards. Dozens of additional scientists and laboratory technicians support the research and service components of our department.
Journal Issue
Is Version Of

A common feature of human and veterinary pharmacokinetics is the importance of identifying and quantifying the key determinants of between-patient variability in drug disposition and effects. Some of these attributes are already well known to the field of human pharmacology such as bodyweight, age, or sex, while others are more specific to veterinary medicine, such as species, breed, and social behavior. Identification of these attributes has the potential to allow a better and more tailored use of therapeutic drugs both in companion and food-producing animals. Nonlinear mixed effects (NLME) have been purposely designed to characterize the sources of variability in drug disposition and response. The NLME approach can be used to explore the impact of population-associated variables on the relationship between drug administration, systemic exposure, and the levels of drug residues in tissues. The latter, while different from the method used by the US Food and Drug Administration for setting official withdrawal times (WT) can also be beneficial for estimating WT of approved animal drug products when used in an extralabel manner. Finally, NLME can also prove useful to optimize dosing schedules, or to analyze sparse data collected in situations where intensive blood collection is technically challenging, as in small animal species presenting limited blood volume such as poultry and fish.


This article is published as Bon C, Toutain PL, Concordet D, et al. Mathematical modeling and simulation in animal health. Part III: Using nonlinear mixed-effects to characterize and quantify variability in drug pharmacokinetics. J Vet Pharmacol Therap. (2018): 171-183. doi: 10.1111/jvp.12473.

Works produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted.