Real-time multi ISFET/FIA soil analysis system with automatic sample extraction

Thumbnail Image
Date
2001-07-01
Authors
Birrell, Stuart
Hummel, John
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Birrell, Stuart
Professor
Research Projects
Organizational Units
Organizational Unit
Agricultural and Biosystems Engineering

Since 1905, the Department of Agricultural Engineering, now the Department of Agricultural and Biosystems Engineering (ABE), has been a leader in providing engineering solutions to agricultural problems in the United States and the world. The department’s original mission was to mechanize agriculture. That mission has evolved to encompass a global view of the entire food production system–the wise management of natural resources in the production, processing, storage, handling, and use of food fiber and other biological products.

History
In 1905 Agricultural Engineering was recognized as a subdivision of the Department of Agronomy, and in 1907 it was recognized as a unique department. It was renamed the Department of Agricultural and Biosystems Engineering in 1990. The department merged with the Department of Industrial Education and Technology in 2004.

Dates of Existence
1905–present

Historical Names

  • Department of Agricultural Engineering (1907–1990)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Agricultural and Biosystems Engineering
Abstract

Successful implementation of site-specific crop management relies on accurate quantification of spatial variation of important factors. Therefore, there is a tremendous need for the development of sensing technologies that will allow automated collection of soil, crop and pest data, to more accurately characterize within-field variability. The objective of this work was to develop an integrated multi-sensor soil analysis system. Ion-selective field effect transistor (ISFET) technology was coupled with flow injection analysis (FIA) to produce a real-time soil analysis system. Testing of the ISFET/ FIA system for soil analysis was carried out in two stages: (1) using manually extracted samples, and (2) the soil to be analysed was placed in the automated soil extraction system, and the extracted solution fed directly into the FIA system. The sensor was successful in measuring soil nitrates in manually extracted soil solutions (r2>0.9). The rapid response of the system allowed a sample to be analysed in 1.25 s, which is satisfactory for real-time soil sensing. Precision and accuracy of the system were highly dependent on maintaining precise, repetitive injection times and maintaining constant flow parameters during the calibration and testing cycle. The progress toward an automated soil extraction system was notable, but considerable effort will be necessary before commercialization can be realized. However, the concept of using ISFETs for the real-time analysis of soil nitrates is sound. The rapid response and low sample volumes required by the multi-sensor ISFET/FIA system make it a viable candidate for use in real-time soil nutrient sensing.

Comments

This article is from Computers and Electronics in Agriculture 32 (2001): 45–67, doi:10.1016/S0168-1699(01)00159-4.

Description
Keywords
Citation
DOI
Copyright
Collections