Improved hydrothermal stability of Pd nanoparticles on nitrogen-doped carbon supports

Thumbnail Image
Date
2018-01-01
Authors
Huo, Jiajie
Duan, Pu
Pham, Hien
Chan, Yee Jher
Datye, Abhaya
Schmidt-Rohr, Klaus
Shanks, Brent
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Shanks, Brent
Distinguished Professor
Research Projects
Organizational Units
Organizational Unit
NSF Engineering Research Center for Biorenewable Chemicals
Founded in 2008 with more than $44M in federal, industry, and Iowa State University funding, CBiRC works in tandem with Iowa and the nation’s growing biosciences sector. CBiRC’s goal is to lead the transformation of the chemical industry toward a future where chemicals derived from biomass resources will lead to the production of new bioproducts to meet evolving societal needs.
Organizational Unit
Chemical and Biological Engineering

The function of the Department of Chemical and Biological Engineering has been to prepare students for the study and application of chemistry in industry. This focus has included preparation for employment in various industries as well as the development, design, and operation of equipment and processes within industry.Through the CBE Department, Iowa State University is nationally recognized for its initiatives in bioinformatics, biomaterials, bioproducts, metabolic/tissue engineering, multiphase computational fluid dynamics, advanced polymeric materials and nanostructured materials.

History
The Department of Chemical Engineering was founded in 1913 under the Department of Physics and Illuminating Engineering. From 1915 to 1931 it was jointly administered by the Divisions of Industrial Science and Engineering, and from 1931 onward it has been under the Division/College of Engineering. In 1928 it merged with Mining Engineering, and from 1973–1979 it merged with Nuclear Engineering. It became Chemical and Biological Engineering in 2005.

Dates of Existence
1913 - present

Historical Names

  • Department of Chemical Engineering (1913–1928)
  • Department of Chemical and Mining Engineering (1928–1957)
  • Department of Chemical Engineering (1957–1973, 1979–2005)
    • Department of Chemical and Biological Engineering (2005–present)

    Related Units

Journal Issue
Is Version Of
Versions
Series
Department
NSF Engineering Research Center for Biorenewable ChemicalsChemical and Biological Engineering
Abstract

Carbon supports have been shown to provide better hydrothermal stability than alumina or silica supports, thus attracting more attention for aqueous-phase biomass conversion reactions. However, sintering and leaching of the metal particles still occur during condensed phase utilization of carbon supported metal catalysts. To further improve the stability of supported metal particles, a simple nitrogen-doped carbon coated SBA-15 was synthesized and systematically characterized. Better stability of supported Pd particles was found from nitrogen incorporation into the carbon support during extended hydrothermal treatment or under continuous flow reaction conditions. With these materials, leaching was negligible and sintering was suppressed. Based on solid-state 15N and 13C NMR analysis before and after hydrothermal treatment, the improved dispersion and stability from nitrogen doping was ascribed to pyridine, pyrrole, and imidazolium groups. Relatively small carbon fragments resulting from nitrogen incorporation rendered more silica exposure to water and concomitant hydrolysis, but the stability and activity of Pd particles were preserved. The Pd stability advantage was also observed on nitrogen-doped carbon coatings of silica gel and CMK-3 supports. The enhanced stability of Pd particles on different nitrogen-doped carbon materials was correlated with the synergistic effect of oxygen and nitrogen heteroatoms and the formation of a decorative carbon overlayer on the Pd particles.

Comments

This is a manuscript of an article published as Huo, Jiajie, Pu Duan, Hien N. Pham, Yee Jher Chan, Abhaya K. Datye, Klaus Schmidt-Rohr, and Brent H. Shanks. "Improved hydrothermal stability of Pd nanoparticles on nitrogen-doped carbon supports." Catalysis Science & Technology 8, no. 14 (2018): 3548-3561. DOI: 10.1039/C8CY00947C. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Mon Jan 01 00:00:00 UTC 2018
Collections