Optical Imaging of the Nanoscale Structure and Dynamics of Biological Membranes

Thumbnail Image
Date
2018-10-19
Authors
Wijesooriya, Chamari
Nyamekye, Charles
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Smith, Emily
Professor
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Chemistry

The Department of Chemistry seeks to provide students with a foundation in the fundamentals and application of chemical theories and processes of the lab. Thus prepared they me pursue careers as teachers, industry supervisors, or research chemists in a variety of domains (governmental, academic, etc).

History
The Department of Chemistry was founded in 1880.

Dates of Existence
1880-present

Related Units

Journal Issue
Is Version Of
Versions
Series
Abstract

Biological membranes serve as the fundamental unit of life, allowing the compartmentalization of cellular contents into subunits with specific functions. The bilayer structure, consisting of lipids, proteins, small molecules, and sugars, also serves many other complex functions in addition to maintaining the relative stability of the inner compartments. Signal transduction, regulation of solute exchange, active transport, and energy transduction through ion gradients all take place at biological membranes, primarily with the assistance of membrane proteins. For these functions, membrane structure is often critical. The fluid-mosaic model introduced by Singer and Nicolson in 1972 evokes the dynamic and fluid nature of biological membranes.(1) According to this model, integral and peripheral proteins are oriented in a viscous phospholipid bilayer. Both proteins and lipids can diffuse laterally through the two-dimensional structure. Modern experimental evidence has shown, however, that the structure of the membrane is considerably more complex; various domains in the biological membranes, such as lipid rafts and confinement regions, form a more complicated molecular organization. The proper organization and dynamics of the membrane components are critical for the function of the entire cell. For example, cell signaling is often initiated at biological membranes and requires receptors to diffuse and assemble into complexes and clusters, and the resulting downstream events have consequences throughout the cell. Revealing the molecular level details of these signaling events is the foundation to understanding numerous unsolved questions regarding cellular life.

Comments

This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication in Analytical Chemistry, copyright © American Chemical Society after peer review. To access the final edited and published work see DOI:10.1021/acs.analchem.8b04755. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Mon Jan 01 00:00:00 UTC 2018
Collections