Chemical Pressure and Rare-Earth Orbital Contributions in Mixed Rare-Earth Silicides La5–xYxSi4 (0 ≤ x ≤ 5)

Thumbnail Image
Supplemental Files
Date
2011-01-01
Authors
Wang, Hui
Jones, Karah
Miller, Gordon
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Miller, Gordon
University Professor
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Chemistry

The Department of Chemistry seeks to provide students with a foundation in the fundamentals and application of chemical theories and processes of the lab. Thus prepared they me pursue careers as teachers, industry supervisors, or research chemists in a variety of domains (governmental, academic, etc).

History
The Department of Chemistry was founded in 1880.

Dates of Existence
1880-present

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryChemistry
Abstract

A crystallographic study and theoretical analysis of the structural and La/Y site preferences in the La5–xYxSi4 (0 ≤ x ≤ 5) series prepared by high-temperature methods is presented. At room temperature, La-rich La5–xYxSi4 phases with x ≤ 3.0 exhibit the tetragonal Zr5Si4-type structure (space group P41212, Z = 4, Pearson symbol tP36), which contains only Si–Si dimers. On the other hand, Y-rich phases with x = 4.0 and 4.5 adopt the orthorhombic Gd5Si4-type structure (space group Pnma, Z = 4, Pearson symbol oP36), also with Si–Si dimers, whereas Y5Si4 forms the monoclinic Gd5Si2Ge2 structure (space group P21/c, Z = 4, Pearson symbol mP36), which exhibits 50% “broken” Si–Si dimers. Local and long-range structural relationships among the tetragonal, orthorhombic, and monoclinic structures are discussed. Refinements from single crystal X-ray diffraction studies of the three independent sites for La or Y atoms in the asymmetric unit reveal partial mixing of these elements, with clearly different preferences for these two elements. First-principles electronic structure calculations, used to investigate the La/Y site preferences and structural trends in the La5–xYxSi4 series, indicate that long- and short-range structural features are controlled largely by atomic sizes. La 5d and Y 4d orbitals, however, generate distinct, yet subtle effects on the electronic density of states curves, and influence characteristics of Si–Si bonding in these phases.

Comments

Reprinted (adapted) with permission from Inorg. Chem., 2011, 50 (24), pp 12714–12723. Copyright 2011 American Chemical Society.

Description
Keywords
Citation
DOI
Copyright
Sat Jan 01 00:00:00 UTC 2011
Collections