Thermodynamic and Kinetic Aspects of Two- and Three-Electron Redox Processes Mediated by Nitrogen Atom Transfer

Supplemental Files
Date
1991-10-01
Authors
Woo, L. Keith
Goll, James
Woo, L.
Czapla, Donald
Hays, J. Alan
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Woo, L.
Person
Research Projects
Organizational Units
Chemistry
Organizational Unit
Journal Issue
Series
Department
Chemistry
Abstract

Treatment of (meso-tetra-p-tolylporphyrinato)manganese(V) nitride, (TTP)Mn==N, with (octaethylporphyrinato) manganese(II), Mn(OEP), in toluene leads to the reversible transfer of the nitrido ligand between the two metal complexes to form (OEP)Mn Nand Mn(TTP). The net result is a formal three-electron reduction of (TTP)MnvN to (TTP)Mn11• This occurs with a second-order rate constant of (5.6 ± 1.2) X 103 M-1 s-1 to form an equilibrium mixture with K~ = 1.2 ± 0.5 at 20 °C. The thermodynamic and activation parameters for this process are t:.H0 = 2.0 ± 0.2 kcalfmol, t:.S = 7 .I ± 0.6 calfmol·K, t:.H* = 9.4 ± 0.7 kcal/mol, and t:.S* = -10 ± 2 cal/mol·K. In THF at 20 °C, the equilibrium constant is 1.8 ± 0.2 and the rate constant drops to 2.3 ± 0.3 M-1 s-1• When a manganese(III) porphyrin complex is used as a reductant, reversible nitrogen atom transfer still occurs but mediates a formal two-electron process. At 22 °C, the exchange process between (TTP)MnCI and (OEP)Mn==N produces (TTP)Mn==N and (OEP)MnCI with a second-order rate constant of 0.010 ± 0.007 M-1 s-1 (t:.H* = 19 ± 2 kcal/mol and t:.S* = -3 ± 6 cal/mol·K) and forms an equilibrium mixture with Keq = 24.3 ± 3.3 (t:.H 0 = -7.0 ± 0.6 kcal/mol and t:.S 0 = -17 ± 2 cal/mol·K). Evidence for the formation of a binuclear wnitrido intermediate is presented for both processes. For the two-electron redox reaction, kinetic studies and mechanistic probes support a pathway which involves an initial chloride dissociation from the Mn(III) complex. Nitrogen atom transfer subsequently occurs between the Mn==N complex and the four-coordinate Mn(III) cationic species.

Comments

Reprinted (adapted) with permission from Journal of the American Chemical Society 113 (1991): 8478, doi:10.1021/ja00022a040. Copyright 1991 American Chemical Society.

Description
Keywords
Citation
DOI
Collections