Soybean Aphid (Aphididae: Hemiptera) Population Growth as Affected by Host Plant Resistance and an Insecticidal Seed Treatment

Thumbnail Image
Date
2013-06-01
Authors
McCarville, Michael
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
O'Neal, Matthew
Professor
Research Projects
Organizational Units
Organizational Unit
Entomology

The Department of Entomology seeks to teach the study of insects, their life-cycles, and the practicalities in dealing with them, for use in the fields of business, industry, education, and public health. The study of entomology can be applied towards evolution and ecological sciences, and insects’ relationships with other organisms & humans, or towards an agricultural or horticultural focus, focusing more on pest-control and management.

History
The Department of Entomology was founded in 1975 as a result of the division of the Department of Zoology and Entomology.

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Abstract

The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae) is a significant soybean pest in the north central United States. Insecticidal seed treatments and host plant resistance are two commercially available management tools. Here we investigate the efficacy of both management tools throughout the season. Soybean lines containing the soybean aphid resistance genes Rag1, Rag2, or both Rag1 + Rag2 were compared with a near-isogenic aphid-susceptible line. Each line was grown in field plots both with and without thiamethoxam applied to the seed. Individual plants from each plot were caged and infested with soybean aphids to measure the efficacy and potential interaction of aphid resistance and thiamethoxam. Aphid population growth rate was measured for each caged plant for 9‐12 d after infestation. New cages were established each week from 34 d after planting (dap) to 92 dap to track seasonal variations in efficacy. Thiamethoxam reduced population growth only at the 42 dap time point and only for the susceptible, Rag1, and Rag2 lines. The lack of an effect of thiamethoxam on theRag1+ Rag2 line was likely because of already high mortality from two resistance genes. Aphid resistance alone reduced population growth compared with the susceptible line at least till 55 dap for single-gene resistance and 63 dap for the two genes combined. Aphid resistance provided suppression of soybean aphid population growth throughout the season unlike the insecticidal seed treatment.

Comments

This article is from Journal of Economic Entomology 106 (2013): 1302–1309, doi:10.1603/EC12495. Posted with permission.

Description
Keywords
Citation
DOI
Subject Categories
Copyright
Tue Jan 01 00:00:00 UTC 2013
Collections