Fundamental and methodological investigations for the improvement of elemental analysis by inductively coupled plasma mass spectrometry

Date
2012-01-01
Authors
Ebert, Christopher
Major Professor
Advisor
Robert S. Houk
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Chemistry
Organizational Unit
Journal Issue
Series
Department
Chemistry
Abstract

This dissertation describes a variety of studies meant to improve the analytical performance of inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation (LA) ICP-MS. The emission behavior of individual droplets and LA generated particles in an ICP is studied using a high-speed, high frame rate digital camera. Phenomena are observed during the ablation of silicate glass that would cause elemental fractionation during analysis by ICP-MS. Preliminary work for ICP torch developments specifically tailored for the improvement of LA sample introduction are presented. An abnormal scarcity of metal-argon polyatomic ions (MAr+) is observed during ICP-MS analysis. Evidence shows that MAr+ ions are dissociated by collisions with background gas in a shockwave near the tip of the skimmer cone. Method development towards the improvement of LA-ICP-MS for environmental monitoring is described. A method is developed to trap small particles in a collodion matrix and analyze each particle individually by LA-ICP-MS.

Comments
Description
Keywords
Citation
Source