Anion exchange capacity of biochar

Thumbnail Image
Date
2014-01-01
Authors
Lawrinenko, Michael
Major Professor
Advisor
David A. Laird
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Agronomy

The Department of Agronomy seeks to teach the study of the farm-field, its crops, and its science and management. It originally consisted of three sub-departments to do this: Soils, Farm-Crops, and Agricultural Engineering (which became its own department in 1907). Today, the department teaches crop sciences and breeding, soil sciences, meteorology, agroecology, and biotechnology.

History
The Department of Agronomy was formed in 1902. From 1917 to 1935 it was known as the Department of Farm Crops and Soils.

Dates of Existence
1902–present

Historical Names

  • Department of Farm Crops and Soils (1917–1935)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Abstract

Nutrient loss, specifically of nitrate and phosphate, from agricultural land often incurs harmful consequences for environmental and groundwater quality and many efforts have been attempted to reduce the discharge of agricultural nutrients to open waters and groundwater, yet no approach has shown to be robust. Biochar has been demonstrated to alter soil properties, thus soils modified with biochar having significant anion exchange capacity (AEC) may exhibit reduced nutrient loss. Our goal in this study was to determine what chemical functional groups contribute AEC to biochar and investigate what production conditions and raw material choices yield biochar with appreciable AEC. Further, we assessed stability of AEC through oxidation of biochars by exposure to singlet oxygen in an aqueous environment. We employed chemical analysis, BET-surface area, particle density and Fourier transform infra-red (FTIR) spectroscopy to characterize the various biochars. For the studied biochars, AEC values ranged from 0.602 to 27.76 cmol Kg-1 and increased with decreasing pH (P < 0.0001) and increasing pyrolysis temperature. Oxidation decreased AEC on average by 54%, however AEC of a 700 °C alfalfa meal biochar was resistant to oxidation. Higher pyrolysis temperature yielded biochar C of greater condensed aromatic character which was more resistant to loss of AEC by oxidation. Surface area and particle density did not influence AEC values. The cellulose biochar was composed almost entirely of C, H, and O but still exhibited significant AEC even at pH 8, suggesting that O containing functional groups contribute AEC. FTIR spectroscopy indicated negligible hydroxyl O, relatively small amounts of carbonyl and carboxyl O, and a prominent peak at 1590 cm-1, which we attribute to C-O+꞊C stretching in O-heterocycles. FTIR and 13C nuclear magnetic resonance (NMR) spectroscopy also revealed that biochars with different levels of condensation of aromatic C oxidize differently with biochars produced at 500 °C exhibiting development of hydroxyl and carbonyl character and biochars produced at 700 °C exhibiting peroxy ether character; hence biochar C produced at different temperatures oxidize differently. We propose possible mechanisms for oxidation. We conclude that AEC in the studied biochars is primarily due to oxonium functional groups formed during pyrolysis.

Comments
Description
Keywords
Citation
Source
Copyright
Wed Jan 01 00:00:00 UTC 2014