Torrefaction of Cellulosic Biomass Upgrading—Energy and Cost Model

Thumbnail Image
Date
2010-06-01
Authors
Maski, Devanand
Darr, Matthew
Anex, Robert
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Darr, Matthew
Professor
Research Projects
Organizational Units
Organizational Unit
Agricultural and Biosystems Engineering

Since 1905, the Department of Agricultural Engineering, now the Department of Agricultural and Biosystems Engineering (ABE), has been a leader in providing engineering solutions to agricultural problems in the United States and the world. The department’s original mission was to mechanize agriculture. That mission has evolved to encompass a global view of the entire food production system–the wise management of natural resources in the production, processing, storage, handling, and use of food fiber and other biological products.

History
In 1905 Agricultural Engineering was recognized as a subdivision of the Department of Agronomy, and in 1907 it was recognized as a unique department. It was renamed the Department of Agricultural and Biosystems Engineering in 1990. The department merged with the Department of Industrial Education and Technology in 2004.

Dates of Existence
1905–present

Historical Names

  • Department of Agricultural Engineering (1907–1990)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Agricultural and Biosystems Engineering
Abstract

The upgrading technology like torrefaction can convert biomass from a highly variable low density feedstock into a consistent high-energy-density commodity, which substantially reduce the production cost. The goal of this study was to quantify torrefaction as a transformative upgrading technology to break current cellulosic feedstock production cost barriers delivered to biorefinery. A robust and expanded torrefaction process simulation model having the capability to quantify biomass torrefaction energy and cost components was developed in Matlab Simulink. Simulation tests were carried out to analyze sensitivity of torrefied biomass energy and production cost scenarios in response to moisture content of corn stover using model key parameters. Torrefaction temperature at critical level is an important requirement for auto-thermal operation of torrefaction process, which can greatly reduce cost of energy requirement and also volatile waste stream. The process can generally be operated as auto-thermal at the temperature 240 0C and above depending upon moisture content of corn stover. For higher torrefaction temperatures of 240, 260, 280, and 300 0C, the rate of increase in cost is gradually linear up to 10, 30, 40, and 50 % moisture content respectively, where torrefaction energy requirement can be met by flue gas energy until this moisture content and above which the operation requires external energy supply (auto thermal operation). For a typical 30 % moisture content of corn stover the normalized net energy ratio is around 0.86 at 240 0C. Torrefaction upgrading should be considered over a minimum 4-month operational period in order to begin minimize production cost. The modeling approach demonstrated in this study may be extended to cost effective and quality enhancing pretreatment of a broad spectrum of other biomass feedstocks and thereby create opportunities in a variety of biorefineries ranging from cellulosic bio-coal to ethanol.

Comments

This is an ASABE Meeting Presentation, Paper No. 1009376.

Description
Keywords
Citation
DOI
Source
Copyright
Fri Jan 01 00:00:00 UTC 2010