Electrical Differentiation of Mesenchymal Stem Cells into Schwann‐Cell‐Like Phenotypes Using Inkjet‐Printed Graphene Circuits

Thumbnail Image
Date
2017-04-05
Authors
Ding, Shaowei
Lentner, Matthew
Hondred, John
Cargill, Allison
Sakaguchi, Donald
Claussen, Jonathan
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Claussen, Jonathan
Associate Professor
Person
Sakaguchi, Donald
Director of Biology and Genetics Undergraduate Program and Morrill Professor
Person
Mallapragada, Surya
Associate Vice President
Research Projects
Organizational Units
Organizational Unit
Organizational Unit
Mechanical Engineering
The Department of Mechanical Engineering at Iowa State University is where innovation thrives and the impossible is made possible. This is where your passion for problem-solving and hands-on learning can make a real difference in our world. Whether you’re helping improve the environment, creating safer automobiles, or advancing medical technologies, and athletic performance, the Department of Mechanical Engineering gives you the tools and talent to blaze your own trail to an amazing career.
Organizational Unit
Neuroscience
The Graduate Program in Neuroscience is an interdepartmental and interdisciplinary training program at Iowa State University that offers the Master of Science and Doctor of Philosophy degrees. The Neuroscience training program offers a broad spectrum of Neuroscience research opportunities, ranging from the molecular to the cellular to the systems level of analysis. The program includes over 40 faculty from the departments of Biochemistry, Biophysics and Molecular Biology; Biomedical Sciences; Chemical and Biological Engineering; Ecology, Evolution, and Organismal Biology; Food Science and Human Nutrition; Genetics, Development and Cell Biology; Kinesiology; Mechanical Engineering; and Psychology.
Organizational Unit
Organizational Unit
Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryMechanical EngineeringNeuroscienceGenetics, Development and Cell BiologyChemical and Biological Engineering
Abstract

Graphene-based materials (GBMs) have displayed tremendous promise for use as neuro-interfacial substrates as they enable favorable adhesion, growth, proliferation, spreading and migration of immobilized cells. Herein we report the first case of the differentiation of Mesenchymal Stem Cells (MSCs) into Schwann Cell (SC) like phenotypes through the application of electrical stimuli from a graphene-based electrode. Electrical differentiation of MSCs into SC like phenotypes is carried out on a flexible, inkjet-printed graphene interdigitated electrode (IDE) circuit that is made highly conductive (sheet resistance < 1 kΩ/☐) via a post-print pulse-laser annealing process. MSCs immobilized on the graphene printed IDEs and electrically stimulated/treated (etMSCs) displayed significant enhanced cellular differentiation and paracrine activity above conventional chemical treatment strategies [~85% of the etMSCs differentiated into SCs like phenotypes with ~80 ng/mL of nerve growth factor (NGF) secretion vs. 75% and ~55 ng/mL for chemically treated MSCs (ctMSCs)]. These results help pave the way for in vivo peripheral nerve regeneration where the flexible This article is protected by copyright. All rights reserved. 3 graphene electrodes could conform to the injury site and provide intimate electrical simulation for nerve cell regrowth.

Comments

This is the peer reviewed version of the following article: Das, Suprem R., Metin Uz, Shaowei Ding, Matthew T. Lentner, John A. Hondred, Allison A. Cargill, Donald S. Sakaguchi, Surya Mallapragada, and Jonathan C. Claussen. "Electrical differentiation of mesenchymal stem cells into Schwann‐cell‐like phenotypes using inkjet‐printed graphene circuits." Advanced healthcare materials 6, no. 7 (2017): 1601087, which has been published in final form at doi: 10.1002/adhm.201601087. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.

Description
Keywords
Citation
DOI
Copyright
Sun Jan 01 00:00:00 UTC 2017
Collections