A laboratory study of particle ploughing and pore-pressure feedback: a velocity-weakening mechanism for soft glacier beds

Thumbnail Image
Date
2008-01-01
Authors
Thomason, Jason
Iverson, Neal
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Iverson, Neal
Distinguished Professor
Research Projects
Organizational Units
Organizational Unit
Geological and Atmospheric Sciences

The Department of Geological and Atmospheric Sciences offers majors in three areas: Geology (traditional, environmental, or hydrogeology, for work as a surveyor or in mineral exploration), Meteorology (studies in global atmosphere, weather technology, and modeling for work as a meteorologist), and Earth Sciences (interdisciplinary mixture of geology, meteorology, and other natural sciences, with option of teacher-licensure).

History
The Department of Geology and Mining was founded in 1898. In 1902 its name changed to the Department of Geology. In 1965 its name changed to the Department of Earth Science. In 1977 its name changed to the Department of Earth Sciences. In 1989 its name changed to the Department of Geological and Atmospheric Sciences.

Dates of Existence
1898-present

Historical Names

  • Department of Geology and Mining (1898-1902)
  • Department of Geology (1902-1965)
  • Department of Earth Science (1965-1977)
  • Department of Earth Sciences (1977-1989)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Geological and Atmospheric Sciences
Abstract

If basal-water discharge and pressure are sufficiently high, a soft-bedded glacier will slip over its bed by ploughing, the process in which particles that span the ice–bed interface are dragged across the bed surface. Results of laboratory experiments indicate that resistance to ploughing can decrease with increasing ploughing velocity (velocity weakening). During ploughing at various velocities (15–400 m a−1), till was compacted in front of idealized particles, causing pore pressures there that were orders of magnitude higher than the ambient value. This excess pore pressure locally weakened the till in shear, thereby decreasing ploughing resistance by a factor of 3.0–6.6 with a six-fold increase in ploughing velocity. Characteristic timescales of pore-pressure diffusion and compaction down-glacier from ploughing particles depend on till diffusivity, ploughing velocity and sizes of ploughing particles. These timescales accurately predict the ranges of these variables over which excess pore pressure and velocity weakening occurred. Existing ploughing models do not account for velocity weakening. A new ploughing model with no adjustable parameters predicts ploughing resistance to no worse than 38% but requires that excess pore pressures be measured. Velocity weakening by this mechanism may affect fast glacier flow, sediment transport by bed deformation and basal seismicity.

Comments

This article is from Journal of Glaciology 54 (2008): 169, doi:10.3189/002214308784409008. Posted with permission.

Description
Keywords
Citation
DOI
Subject Categories
Copyright
Tue Jan 01 00:00:00 UTC 2008
Collections