Development of the Regional Arctic System Model (RASM): Near-Surface Atmospheric Climate Sensitivity

Thumbnail Image
Date
2017-08-01
Authors
Cassano, John
DuVivier, Alice
Roberts, Andrew
Hughes, Mimi
Seefeldt, Mark
Brunke, Michael
Craig, Anthony
Fisel, Brandon
Gutowski, William
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Gutowski, William
Professor
Research Projects
Organizational Units
Organizational Unit
Geological and Atmospheric Sciences

The Department of Geological and Atmospheric Sciences offers majors in three areas: Geology (traditional, environmental, or hydrogeology, for work as a surveyor or in mineral exploration), Meteorology (studies in global atmosphere, weather technology, and modeling for work as a meteorologist), and Earth Sciences (interdisciplinary mixture of geology, meteorology, and other natural sciences, with option of teacher-licensure).

History
The Department of Geology and Mining was founded in 1898. In 1902 its name changed to the Department of Geology. In 1965 its name changed to the Department of Earth Science. In 1977 its name changed to the Department of Earth Sciences. In 1989 its name changed to the Department of Geological and Atmospheric Sciences.

Dates of Existence
1898-present

Historical Names

  • Department of Geology and Mining (1898-1902)
  • Department of Geology (1902-1965)
  • Department of Earth Science (1965-1977)
  • Department of Earth Sciences (1977-1989)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Geological and Atmospheric Sciences
Abstract

The near-surface climate, including the atmosphere, ocean, sea ice, and land state and fluxes, in the initial version of the Regional Arctic System Model (RASM) are presented. The sensitivity of the RASM near-surface climate to changes in atmosphere, ocean, and sea ice parameters and physics is evaluated in four simulations. The near-surface atmospheric circulation is well simulated in all four RASM simulations but biases in surface temperature are caused by biases in downward surface radiative fluxes. Errors in radiative fluxes are due to biases in simulated clouds with different versions of RASM simulating either too much or too little cloud radiative impact over open ocean regions and all versions simulating too little cloud radiative impact over land areas. Cold surface temperature biases in the central Arctic in winter are likely due to too few or too radiatively thin clouds. The precipitation simulated by RASM is sensitive to changes in evaporation that were linked to sea surface temperature biases. Future work will explore changes in model microphysics aimed at minimizing the cloud and radiation biases identified in this work.

Comments

This article is published as Cassano, John J., Alice DuVivier, Andrew Roberts, Mimi Hughes, Mark Seefeldt, Michael Brunke, Anthony Craig et al. "Development of the Regional Arctic System Model (RASM): near-surface atmospheric climate sensitivity." Journal of Climate 30, no. 15 (2017): 5729-5753. doi: 10.1175/JCLI-D-15-0775.1.

Description
Keywords
Citation
DOI
Copyright
Collections