Contributions of Mixed Physics versus Perturbed Initial/Lateral Boundary Conditions to Ensemble-Based Precipitation Forecast Skill

Thumbnail Image
Date
2008-01-01
Authors
Clark, Adam
Gallus, William
Chen, Tsing-Chang
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Gallus, William
Professor
Research Projects
Organizational Units
Organizational Unit
Geological and Atmospheric Sciences

The Department of Geological and Atmospheric Sciences offers majors in three areas: Geology (traditional, environmental, or hydrogeology, for work as a surveyor or in mineral exploration), Meteorology (studies in global atmosphere, weather technology, and modeling for work as a meteorologist), and Earth Sciences (interdisciplinary mixture of geology, meteorology, and other natural sciences, with option of teacher-licensure).

History
The Department of Geology and Mining was founded in 1898. In 1902 its name changed to the Department of Geology. In 1965 its name changed to the Department of Earth Science. In 1977 its name changed to the Department of Earth Sciences. In 1989 its name changed to the Department of Geological and Atmospheric Sciences.

Dates of Existence
1898-present

Historical Names

  • Department of Geology and Mining (1898-1902)
  • Department of Geology (1902-1965)
  • Department of Earth Science (1965-1977)
  • Department of Earth Sciences (1977-1989)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Geological and Atmospheric Sciences
Abstract

An experiment is described that is designed to examine the contributions of model, initial condition (IC), and lateral boundary condition (LBC) errors to the spread and skill of precipitation forecasts from two regional eight-member 15-km grid-spacing Weather Research and Forecasting (WRF) ensembles covering a 1575 km X 1800 km domain. It is widely recognized that a skillful ensemble [i.e., an ensemble with a probability distribution function (PDF) that generates forecast probabilities with high resolution and reliability] should account for both error sources. Previous work suggests that model errors make a larger contribution than IC and LBC errors to forecast uncertainty in the short range before synoptic-scale error growth becomes nonlinear. However, in a regional model with unperturbed LBCs, the infiltration of the lateral boundaries will negate increasing spread. To obtain a better understanding of the contributions to the forecast errors in precipitation and to examine the window of forecast lead time before unperturbed ICs and LBCs begin to cause degradation in ensemble forecast skill, the "perfect model" assumption is made in an ensemble that uses perturbed ICs and LBCs (PILB ensemble), and the "perfect analysis" assumption is made in another ensemble that uses mixed physics-dynamic cores (MP ensemble), thus isolating the error contributions. For the domain and time period used in this study, unperturbed ICs and LBCs in the MP ensemble begin to negate increasing spread around forecast hour 24, and ensemble forecast skill as measured by relative operating characteristic curves (ROC scores) becomes lower in the MP ensemble than in the PILB ensemble, with statistical significance beginning after forecast hour 69. However, degradation in forecast skill in the MP ensemble relative to the PILB ensemble is not observed in an analysis of deterministic forecasts calculated from each ensemble using the probability matching method. Both ensembles were found to lack statistical consistency (i.e., to be underdispersive), with the PILB ensemble (MP ensemble) exhibiting more (less) statistical consistency with respect to forecast lead time. Spread ratios in the PILB ensemble are greater than those in the MP ensemble at all forecast lead times and thresholds examined; however, ensemble variance in the MP ensemble is greater than that in the PILB ensemble during the first 24 h of the forecast. This discrepancy in spread measures likely results from greater bias in the MP ensemble leading to an increase in ensemble variance and decrease in spread ratio relative to the PILB ensemble.

Comments

This article is from Monthly Weather Review 136 (2008): 2140, doi: 10.1175/2007MWR2029.1. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Tue Jan 01 00:00:00 UTC 2008
Collections