Optimal Replacement in the Proportional Hazards Model with Semi-Markovian Covariate Process and Continuous Monitoring

Thumbnail Image
Date
2011-07-01
Authors
Wu, Xiang
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Ryan, Sarah
Department Chair
Research Projects
Organizational Units
Organizational Unit
Industrial and Manufacturing Systems Engineering
The Department of Industrial and Manufacturing Systems Engineering teaches the design, analysis, and improvement of the systems and processes in manufacturing, consulting, and service industries by application of the principles of engineering. The Department of General Engineering was formed in 1929. In 1956 its name changed to Department of Industrial Engineering. In 1989 its name changed to the Department of Industrial and Manufacturing Systems Engineering.
Journal Issue
Is Version Of
Versions
Series
Department
Industrial and Manufacturing Systems Engineering
Abstract

Motivated by the increasing use of condition monitoring technology for electrical transformers, this paper deals with the optimal replacement of a system having a hazard function that follows the proportional hazards model with a semi-Markovian covariate process, which we assume is under continuous monitoring. Although the optimality of a threshold replacement policy to minimize the long-run average cost per unit time was established previously in a more general setting, the policy evaluation step in an iterative algorithm to identify optimal threshold values poses computational challenges. To overcome them, we use conditioning to derive an explicit expression of the objective in terms of the set of state-dependent threshold ages for replacement. The iterative algorithm is customized for our model to find the optimal threshold ages. A three-state example illustrates the computational procedure, as well as the effects of different sojourn time distributions of the covariate process on the optimal policy and cost. Numerical examples and sensitivity analysis provide some insights into the suitability of a Markov approximation, and the sources of variability in the cost. The optimization method developed here is much more efficient than the approach that approximates continuous monitoring as periodic, and then optimizes the periodic monitoring parameters.

Comments

This is a manuscript of an article from IEEE Transactions on Reliability 60 (2011): 580, doi: 10.1109/TR.2011.2161049. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Sat Jan 01 00:00:00 UTC 2011
Collections