Performance of Recycled Asphalt Shingles in Hot Mix Asphalt

Thumbnail Image
Date
2013-08-01
Authors
Williams, R.
Cascione, Andrew
Yu, Jianhua
Haugen, Debra
Marasteanu, Mihai
McGraw, Jim
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Research Projects
Organizational Units
Organizational Unit
Institute for Transportation
InTrans administers 14 centers and programs, and several other distinct research specialties, and a variety of technology transfer and professional education initiatives. More than 100 Iowa State University faculty and staff work at InTrans, and from 200 to 250 student assistants from several ISU departments conduct research while working closely with university faculty. InTrans began in 1983 as a technical assistance program for Iowa’s rural transportation agencies.
Journal Issue
Is Version Of
Versions
Series
Department
Institute for Transportation
Abstract

State highway agencies are increasingly intersted in using recycled asphalt shingles (RAS) in hot mix asphalt (HMA) applications, yet many agencies share common questions about the effect of RAS on the performance of HMA. Previous research has allowed for only limited laboratory testing and field surveys. The complexity of RAS materials and lack of past experiences led to the creation of Transportation Pooled Fund (TPF) Program TPF-5(213). The primary goal of this study is to address research needs of state DOT and environmental officials to determine the best practices for the use of recycled asphalt shingles in hot-mix asphalt applications. Agencies participating in the study include Missouri (lead state), California, Colorado, Illinois, Indiana, Iowa, Minnesota, Wisconsin, and the Federal Highway Administration. The agencies conducted demonstration projects that focused on evaluating different aspects (factors) of RAS that include RAS grind size, RAS percentage, RAS source (post-consumer versus post-manufactured), RAS in combination with warm mix asphalt technology, RAS as a fiber replacement for stone matrix asphalt, and RAS in combination with ground tire rubber. Field mixes from each demonstration project were sampled for conducting the following tests: dynamic modulus, flow number, four-point beam fatigue, semi-circular bending, and binder extraction and recovery with subsequent binder characterization. Pavement condition surveys were then conducted for each project after completion.

The demonstration projects showed that pavements using RAS alone or in combination with other cost saving technologies (e.g., WMA, RAP, GTR, SMA) can be successfully produced and meet state agency quality assurance requirements. The RAS mixes have very promising prospects since laboratory test results indicate good rutting and fatigue cracking resistance with low temperature cracking resistance similar to the mixes without RAS. The pavement condition of the mixes in the field after two years corroborated the laboratory test results. No signs of rutting, wheel path fatigue cracking, or thermal cracking were exhibited in the pavements. However, transverse reflective cracking from the underlying jointed concrete pavement was measured in the Missouri, Colorado, Iowa, Indiana, and Minnesota projects.

Comments
Description
Keywords
Citation
DOI
Source
Subject Categories
Copyright
Collections