Testing a nitrogen fertilizer applicator designed to reduce leaching losses

Thumbnail Image
Date
1997
Authors
Ressler, D. E.
Horton, R.
Baker, J. L.
Kaspar, T. C.
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Horton, Robert
Distinguished Professor
Research Projects
Organizational Units
Organizational Unit
Agronomy

The Department of Agronomy seeks to teach the study of the farm-field, its crops, and its science and management. It originally consisted of three sub-departments to do this: Soils, Farm-Crops, and Agricultural Engineering (which became its own department in 1907). Today, the department teaches crop sciences and breeding, soil sciences, meteorology, agroecology, and biotechnology.

History
The Department of Agronomy was formed in 1902. From 1917 to 1935 it was known as the Department of Farm Crops and Soils.

Dates of Existence
1902–present

Historical Names

  • Department of Farm Crops and Soils (1917–1935)

Related Units

Organizational Unit
Agricultural and Biosystems Engineering

Since 1905, the Department of Agricultural Engineering, now the Department of Agricultural and Biosystems Engineering (ABE), has been a leader in providing engineering solutions to agricultural problems in the United States and the world. The department’s original mission was to mechanize agriculture. That mission has evolved to encompass a global view of the entire food production system–the wise management of natural resources in the production, processing, storage, handling, and use of food fiber and other biological products.

History
In 1905 Agricultural Engineering was recognized as a subdivision of the Department of Agronomy, and in 1907 it was recognized as a unique department. It was renamed the Department of Agricultural and Biosystems Engineering in 1990. The department merged with the Department of Industrial Education and Technology in 2004.

Dates of Existence
1905–present

Historical Names

  • Department of Agricultural Engineering (1907–1990)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
AgronomyAgricultural and Biosystems Engineering
Abstract

Conventional practices for nitrogen fertilization of corn produce soil conditions that are conducive to preferential water flow and nitrate leaching. A new fertilizer applicator is proposed that will more effectively protect the fertilizer from infiltrating water and thus reduce the potential for leaching. The device forms a small compacted layer of soil above the subsurface fertilizer band and then mounds soil into a surface dome directly above the fertilizer band. This new localized compaction and doming (LCD) method is evaluated by measuring soil physical properties around the fertilizer band and comparing them with measurements made within the conventional knifing system. The LCD applicator increased penetration resistance from 0.50 to 0.75 MPa at the fertilizer band. As the knife slit above the fertilizer band was closed by the LCD applicator, soil bulk density was increased from 1.2 to 1.4 g/cm3 in the region. The ponded infiltration rate through the fertilizer band was reduced from 19.7 cm/h at the conventional knife slit to 10.1 cm/h at the LCD surface. Reduced water flow through the fertilizer band will result in reduced NO3-N movement. Nitrate movement was measured during a growing season in a corn field, and NO3-N applied by the LCD applicator moved approximately 60% as deep as NO3-N applied by a conventional knife applicator. The ability to restrict NO3-N movement by modifying the surface soil at N application represents a simple yet effective strategy to reduce NO3-N leaching losses and possible impacts on groundwater quality.

Comments

This article is published as Ressler, D. E., Robert Horton, J. L. Baker, and T. C. Kaspar. "Testing a nitrogen fertilizer applicator designed to reduce leaching losses." Applied Engineering in Agriculture 13, no. 3 (1997): 345-350. doi: 10.13031/2013.21617. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Wed Jan 01 00:00:00 UTC 1997
Collections