Sensible Heat Observations Reveal Soil-Water Evaporation Dynamics

Thumbnail Image
Date
2008-02-01
Authors
Heitman, J. L.
Horton, R.
Sauer, T. J.
DeSutter, T. M.
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Horton, Robert
Distinguished Professor
Research Projects
Organizational Units
Organizational Unit
Journal Issue
Is Version Of
Versions
Series
Department
Agronomy
Abstract

Soil-water evaporation is important at scales ranging from microbial ecology to large-scale climate. Yet routine measurements are unable to capture rapidly shifting near-surface soil heat and water processes involved in soil-water evaporation. The objective of this study was to determine the depth and location of the evaporation zone within soil. Three-needle heat-pulse sensors were used to monitor soil heat capacity, thermal conductivity, and temperature below a bare soil surface in central Iowa during natural wetting/drying cycles. Soil heat flux and changes in heat storage were calculated from these data to obtain a balance of sensible heat components. The residual from this balance, attributed to latent heat from water vaporization, provides an estimate of in situ soil-water evaporation. As the soil dried following rainfall, results show divergence in the soil sensible heat flux with depth. Divergence in the heat flux indicates the location of a heat sink associated with soil-water evaporation. Evaporation estimates from the sensible heat balance provide depth and time patterns consistent with observed soil-water depletion patterns. Immediately after rainfall, evaporation occurred near the soil surface. Within 6 days after rainfall, the evaporation zone proceeded > 13 mm into the soil profile. Evaporation rates at the 3-mm depth reached peak values > 0.25 mm h−1. Evaporation occurred simultaneously at multiple measured depth increments, but with time lag between peak evaporation rates for depths deeper below the soil surface. Implementation of finescale measurement techniques for the soil sensible heat balance provides a new opportunity to improve understanding of soil-water evaporation.

Comments

This article is published as Heitman, J. L., Robert Horton, T. J. Sauer, and T. M. DeSutter. "Sensible heat observations reveal soil-water evaporation dynamics." Journal of Hydrometeorology 9, no. 1 (2008): 165-171. doi: 10.1175/2007JHM963.1. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Collections