Overcoming self-incompatibility in grasses: a pathway to hybrid breeding

Thumbnail Image
Date
2016-10-01
Authors
Do Canto, Javier
Studer, Bruno
Lubberstedt, Thomas
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Research Projects
Organizational Units
Organizational Unit
Journal Issue
Is Version Of
Versions
Series
Department
Agronomy
Abstract

Allogamous grasses exhibit an effective two-locus gametophytic self-incompatibility (SI) system, limiting the range of breeding techniques applicable for cultivar development. Current breeding methods based on populations are characterized by comparably low genetic gains for important traits such as biomass yield. To implement more efficient breeding schemes, the overall understanding of the SI system is crucial as are the mechanisms involved in the breakdown of SI. Self-fertile variants in outcrossing grasses have been studied, and the current level of knowledge includes approximate gene locations, linked molecular markers and first hypotheses on their mode of action. Environmental conditions increasing seed set upon self-pollination have also been described. Even though some strategies were proposed to take advantage of self-fertility, there have, so far, not been changes in the methods applied in cultivar development for allogamous grasses. In this review, we describe the current knowledge about self-fertility in allogamous grasses and outline strategies to incorporate this trait for implementation in synthetic and hybrid breeding schemes.

Comments

This is a post-peer-review, pre-copyedit version of an article published in Theoretical and Applied Genetics. The final authenticated version is available online at: http://dx.doi.org/ 10.1007/s00122-016-2775-2.

Description
Keywords
Citation
DOI
Copyright
Fri Jan 01 00:00:00 UTC 2016
Collections