Femoral Neck Stress in Older Adults During Stair Ascent and Descent

Thumbnail Image
Date
2018-06-01
Authors
Gillette, Jason
Derrick, Timothy
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Gillette, Jason
Associate Professor
Person
Derrick, Timothy
Professor
Research Projects
Organizational Units
Organizational Unit
Kinesiology
The Department of Kinesiology seeks to provide an ample knowledge of physical activity and active living to students both within and outside of the program; by providing knowledge of the role of movement and physical activity throughout the lifespan, it seeks to improve the lives of all members of the community. Its options for students enrolled in the department include: Athletic Training; Community and Public Health; Exercise Sciences; Pre-Health Professions; and Physical Education Teacher Licensure. The Department of Physical Education was founded in 1974 from the merger of the Department of Physical Education for Men and the Department of Physical Education for Women. In 1981 its name changed to the Department of Physical Education and Leisure Studies. In 1993 its name changed to the Department of Health and Human Performance. In 2007 its name changed to the Department of Kinesiology. Dates of Existence: 1974-present. Historical Names: Department of Physical Education (1974-1981), Department of Physical Education and Leisure Studies (1981-1993), Department of Health and Human Performance (1993-2007). Related Units: College of Human Sciences (parent college), College of Education (parent college, 1974 - 2005), Department of Physical Education for Women (predecessor) Department of Physical Education for Men
Journal Issue
Is Version Of
Versions
Series
Department
Kinesiology
Abstract

A detailed understanding of the hip loading environment is needed to help prevent hip fractures, minimize hip pain, rehabilitate hip injuries, and design osteogenic exercises for the hip. The purpose of this study was to compare femoral neck stress during stair ascent and descent and to identify the contribution of muscles and reaction forces to the stress environment in mature adult subjects (n = 17; age: 50–65 y). Motion analysis and inverse dynamics were combined with musculoskeletal modeling and optimization, then used as input to an elliptical femoral neck cross-sectional model to estimate femoral neck stress. Peak stress values at the 2 peaks of the bimodal stress curves (stress vs time plot) were compared between stair ascent and descent. Stair ascent had greater compressive stress than descent during the first peak at the anterior (ascent: −18.0 [7.9] MPa, descent: −12.9 [5.4] MPa, P < .001) and posterior (ascent: −34.4 [10.9] MPa, descent: −27.8 [10.1] MPa, P < .001) aspects of the femoral neck cross section. Stair descent had greater tensile stress during both peaks at the superior aspect (ascent: 1.3 [7.0] MPa, descent: 24.8 [9.7] MPa, peak 1: P < .001; ascent: 15.7 [6.1] MPa, descent: 18.0 [8.4] MPa, peak 2: P = .03) and greater compressive stress during the second peak at the inferior aspect (ascent: −43.8 [9.7] MPa, descent: −51.1 [14.3] MPa, P = .004). Understanding this information can provide a more comprehensive view of bone loading at the femoral neck for older population.

Comments

This accepted article is published as Deng C, Gillette JC, & Derrick TR. (2018). Femoral neck stress in older adults during stair ascent and descent. Journal of Applied Biomechanics, 34(3);191-198. https://doi.org/10.1123/jab.2017-0122. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Mon Jan 01 00:00:00 UTC 2018
Collections