Partition problems in high dimensional boxes

Date
2018-06-30
Authors
Bucic, Matija
Lidicky, Bernard
Lidicky, Bernard
Long, Jason
Wagner, Adam Zsolt
Journal Title
Journal ISSN
Volume Title
Publisher
Source URI
Altmetrics
Authors
Research Projects
Organizational Units
Mathematics
Organizational Unit
Journal Issue
Series
Abstract

Alon, Bohman, Holzman and Kleitman proved that any partition of a d-dimensional discrete box into proper sub-boxes must consist of at least 2d sub-boxes. Recently, Leader, Milicevic and Tan considered the question of how many odd-sized proper boxes are needed to partition a d-dimensional box of odd size, and they asked whether the trivial construction consisting of 3d boxes is best possible. We show that approximately 2.93d boxes are enough, and consider some natural generalisations.

Description
<p>This is a manuscript made available through arxiv: <a href="https://arxiv.org/abs/1805.11278" target="_blank">https://arxiv.org/abs/1805.11278</a>.</p>
Keywords
Citation
Collections