Ionothermal Synthesis, Crystal Structure, and Magnetic Study of Co2PO4OH Isostructural with Caminite

Supplemental Files
Date
2014-01-01
Authors
Wang, Guangmei
Mudring, Anja
Valldor, Martin
Spielberg, Eike
Mudring, Anja
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Journal Issue
Series
Department
Materials Science and Engineering
Abstract

A new framework cobalt(II) hydroxyl phosphate, Co2PO4OH, was prepared by ionothermal synthesis using 1-butyl-4-methyl-pyridinium hexafluorophosphate as the ionic liquid. As the formation of Co2PO4F competes in the synthesis, the synthesis conditions have to be judiciously chosen to obtain well-crystallized, single phase Co2PO4OH. Single-crystal X-ray diffraction analyses reveal Co2PO4OH crystallizes with space group I41/amd (a = b = 5.2713(7) Å, c = 12.907(3) Å, V = 358.63(10) Å3, and Z = 4). Astonishingly, it does not crystallize isotypically with Co2PO4F but rather isotypically with the hydroxyl minerals caminite Mg1.33[SO4(OH)0.66(H2O)0.33] and lipscombite Fe2–yPO4(OH) (0 ≤ y ≤ 2/3). Phosphate tetrahedra groups interconnect four rod-packed face-sharing 1{CoO6/2} octahedra chains to form a three-dimensional framework structure. The compound Co2PO4OH was further characterized by powder X-ray diffraction, Fourier transform–infrared, and ultraviolet–visible spectroscopy, confirming the discussed structure. The magnetic measurement reveals that Co2PO4OH undergoes a magnetic transition and presents at low temperatures a canted antiferromagnetic spin order in the ground state.

Comments

Reprinted with permission from Inorg. Chem., 2014, 53 (6), pp 3072–3077. Copyright 2014 American Chemical Society.

Description
Keywords
Citation
DOI
Collections