Giant Strains in Non-Textured (Bi1/2Na1/2)TiO3-Based Lead-Free Ceramics

Thumbnail Image
Date
2015-01-01
Authors
Luo, Xiaoming
Tan, Xiaoli
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Tan, Xiaoli
Professor
Research Projects
Organizational Units
Organizational Unit
Materials Science and Engineering
Materials engineers create new materials and improve existing materials. Everything is limited by the materials that are used to produce it. Materials engineers understand the relationship between the properties of a material and its internal structure — from the macro level down to the atomic level. The better the materials, the better the end result — it’s as simple as that.
Journal Issue
Is Version Of
Versions
Series
Department
Materials Science and Engineering
Abstract

Recent intense research on lead-free piezoceramics has led to the discovery of many oxide ceramics with excellent properties.[1-4] Among reported solid solution families, the bismuth-alkali titanate-based system develops the largest strain under applied electric field (0.45%–0.48%),[5-7] making it a promising material for applications in actuators.[8, 9] However, high electric fields are required in this system, resulting in a low d33* (the large-signal piezoelectric coefficient). Values of d33* greater than 1000 pm V−1 were reported in barium titanate- and alkali-niobate-based families, but the achievable electrostrain is quite low (often below 0.3%).[10-12] Single crystals possess remarkable values for both d33* and electrostrain,[13, 14] the difficulties in fabrication and associated high cost have yet to be overcome for production in quantity. In this Communication, we report giant electrostrain (0.70%) and d33* (1400 pm V−1) in a non-textured lead-free polycrystalline ceramic. These excellent properties are attributed to electric-field-induced phase transitions, according to in situ transmission electron microscopy (TEM) examinations. The results are directly beneficial to next-generation actuators, and may also shed light on the development of deformable structural ceramics.

Comments

This is the accepted version of the following article: Giant strains in non-textured (Bi1/2Na1/2)TiO3-based lead-free ceramics (with X.M. Liu), Advanced Materials, published online, 2015. DOI: 10.1002/ adma.201503768, which has been published in final form at http:// dx.doi.org/10.1002/adma.201503768.

Description
Keywords
Citation
DOI
Copyright
Thu Jan 01 00:00:00 UTC 2015
Collections