Liquid Metal-Elastomer Soft Composites with Independently Controllable and Highly Tunable Droplet Size and Volume Loading

Bartlett, Michael
Tutika, Ravi
Kmiec, Steven
Martin, Steve
Haque, A. B. M. Tahidul
Martin, Steve
Bartlett, Michael
Major Professor
Committee Member
Journal Title
Journal ISSN
Volume Title
Research Projects
Organizational Units
Journal Issue
Materials Science and Engineering

Soft composites are critical for soft and flexible materials in energy harvesting, actuators, and multifunctional devices. One emerging approach to create multifunctional composites is through the incorporation of liquid metal (LM) droplets such as eutectic gallium indium (EGaIn) in highly deformable elastomers. The microstructure of such systems is critical to their performance, however, current materials lack control of particle size at diverse volume loadings. Here, we present a fabrication approach to create liquid metal-elastomer composites with independently controllable and highly tunable droplet size (100 nm ≦ D ≦ 80 μm) and volume loading (0 ≦ φ ≦ 80%). This is achieved through a combination of shear mixing and sonication of concentrated LM/elastomer emulsions to control droplet size and subsequent dilution and homogenization to tune LM volume loading. These materials are characterized utilizing dielectric spectroscopy supported by analytical modeling which shows a high relative permittivity of 60 (16x the unfilled elastomer) in a composite with φ = 80%, a low tan δ of 0.02, and a significant dependence on φ and minor dependence on droplet size. Temperature response and stability are determined using dielectric spectroscopy through temperature and frequency sweeps and with DSC. These results demonstrate a wide temperature stability of the liquid metal phase (crystallizing < -85 °C for D < 20 μm). Additionally, all composites are electrically insulating across a wide frequency (0.1 Hz - 10 MHz) and temperature (-70°C to 100°C) range even up to φ = 80%. We highlight the benefit of LM microstructure control by creating all soft matter stretchable capacitive sensors with tunable sensitivity. These sensors are further integrated into a wearable sensing glove where we identify different objects during grasping motions. This work enables programmable LM composites for soft robotics and stretchable electronics where flexibility and tunable functional response are critical.


This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication in ACS Applied Materials & Interfaces, copyright © American Chemical Society after peer review. To access the final edited and published work see DOI: 10.1021/acsami.9b04569. Posted with permission.