Heavy-quark production and elliptic flow in Au plus Au collisions at root(NN)-N-S=62.4 GeV

Thumbnail Image
Date
2015-04-28
Authors
Adare, Andrew
Ding, Lei
Dion, Alan
Hill, John
Kempel, Todd
Lajoie, John
Lebedev, Alexandre
Ogilvie, Craig
Pei, H.
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Ogilvie, Craig
Contingent Worker
Research Projects
Organizational Units
Organizational Unit
Physics and Astronomy
Physics and astronomy are basic natural sciences which attempt to describe and provide an understanding of both our world and our universe. Physics serves as the underpinning of many different disciplines including the other natural sciences and technological areas.
Journal Issue
Is Version Of
Versions
Series
Department
Physics and Astronomy
Abstract

We present measurements of electrons and positrons from the semileptonic decays of heavy-flavor hadrons at midrapidity (vertical bar gamma vertical bar < 0.35) in Au + Au collisions at root(NN)-N-S = 62.4 GeV. The data were collected in 2010 by the PHENIX experiment that included the new hadron-blind detector. The invariant yield of electrons from heavy-flavor decays is measured as a function of transverse momentum in the range 1 < p(T)(e) < 5 GeV/c. The invariant yield per binary collision is slightly enhanced above the p + p reference in Au + Au 0%-20%, 20%-40%, and 40%-60% centralities at a comparable level. At this low beam energy this may be a result of the interplay between initial-state Cronin effects, final-state flow, and energy loss in medium. The v(2) of electrons from heavy-flavor decays is nonzero when averaged between 1.3 < p(T)(e) < 2.5 GeV/c for 0%-40% centrality collisions at root(NN)-N-S = 62.4 GeV. For 20%-40% centrality collisions, the v(2) at root(NN)-N-S = 62.4 GeV is smaller than that for heavy-flavor decays at root(NN)-N-S = 200 GeV. The v2 of the electrons from heavy-flavor decay at the lower beam energy is also smaller than v(2) for pions. Both results indicate that the heavy quarks interact with the medium formed in these collisions, but they may not be at the same level of thermalization with the medium as observed at root(NN)-N-S = 200 GeV.

Comments

This is an article from Physical Review C 91 (2015): 044907, doi:10.1103/PhysRevC.91.044907. Posted with permission.

Description
Keywords
Citation
DOI
Subject Categories
Copyright
Thu Jan 01 00:00:00 UTC 2015
Collections