Magnetically polarized Ir dopant atoms in superconducting Ba(Fe1-xIrx)(2)As-2

Thumbnail Image
Date
2012-04-01
Authors
Dean, M.
Kim, M. G.
Kreyssig, Andreas
Kim, J. W.
Liu, X.
Ryan, P. J.
Thaler, A.
Bud’ko, Sergey
Strassheim, W.
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Canfield, Paul
Distinguished Professor
Research Projects
Organizational Units
Organizational Unit
Organizational Unit
Physics and Astronomy
Physics and astronomy are basic natural sciences which attempt to describe and provide an understanding of both our world and our universe. Physics serves as the underpinning of many different disciplines including the other natural sciences and technological areas.
Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryPhysics and Astronomy
Abstract

We investigate the magnetic polarization of the Ir 5d dopant states in the pnictide superconductor Ba(Fe1−xIrx)2As2 with x=0.027(2) using Ir L3 edge x-ray resonant magnetic scattering (XRMS). Despite the fact that doping partially suppresses the antiferromagnetic transition, we find that magnetic order survives around the Ir dopant sites. The Ir states are magnetically polarized with commensurate stripe-like antiferromagnetic order and long correlations lengths, ξmag>2800 and >850 Å, in the ab plane and along the c axis, respectively, driven by their interaction with the Fe spins. This Ir magnetic order persists up to the Néel transition of the majority Fe spins at TN=74(2) K. At 5 K we find that magnetic order coexists microscopically with superconductivity in Ba(Fe1−xIrx)2As2. The energy dependence of the XRMS through the Ir L3 edge shows a non-Lorentzian line shape, which we explain in terms of interference between Ir resonant scattering and Fe nonresonant magnetic scattering.

Comments

This article is published as Dean, M. P. M., M. G. Kim, A. Kreyssig, J. W. Kim, X. Liu, P. J. Ryan, A. Thaler, S. L. Bud’ko, W. Strassheim, P. C. Canfield, J. P. Hill, and A. I. Goldman. "Magnetically polarized Ir dopant atoms in superconducting Ba (Fe 1− x Ir x) 2 As 2." Physical Review B 85, no. 14 (2012): 140514(R). DOI: 10.1103/PhysRevB.85.140514. Posted with permission.

Description
Keywords
Citation
DOI
Subject Categories
Copyright
Sun Jan 01 00:00:00 UTC 2012
Collections