Development of an Air Sparged Continuous Flow Reactor for Struvite Precipitation from Two Different Liquid Swine Manure Storage Systems

Thumbnail Image
Date
2007-09-16
Authors
Burns, Robert
Moody, Lara
Stalder, Kenneth
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Raman, D. Raj
Morrill Professor
Person
Stalder, Kenneth
Professor
Research Projects
Organizational Units
Organizational Unit
Agricultural and Biosystems Engineering

Since 1905, the Department of Agricultural Engineering, now the Department of Agricultural and Biosystems Engineering (ABE), has been a leader in providing engineering solutions to agricultural problems in the United States and the world. The department’s original mission was to mechanize agriculture. That mission has evolved to encompass a global view of the entire food production system–the wise management of natural resources in the production, processing, storage, handling, and use of food fiber and other biological products.

History
In 1905 Agricultural Engineering was recognized as a subdivision of the Department of Agronomy, and in 1907 it was recognized as a unique department. It was renamed the Department of Agricultural and Biosystems Engineering in 1990. The department merged with the Department of Industrial Education and Technology in 2004.

Dates of Existence
1905–present

Historical Names

  • Department of Agricultural Engineering (1907–1990)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Agricultural and Biosystems Engineering
Abstract

Forced precipitation of struvite (MgNH4PO4*6H2O) has been demonstrated to be an effective method to reduce dissolved reactive phosphorus (DRP) from swine manure. The development of a robust and flexible continuous flow struvite precipitation reactor is essential to the application of this method to modern livestock operations. Swine manure generally requires pH adjustment, magnesium amendment and a sufficient reaction time to create optimum conditions for struvite precipitation. A bench-scale (14-L) continuous flow reactor was developed to force struvite precipitation and reduce DRP. The bench scale system was developed to quantify system performance prior to building a much larger pilot-scale unit. The bench-scale reactor used air sparging to provide pH adjustment and mixing. Influent manure slurry was continuously amended with magnesium chloride (MgCl2 . 6H2O) to promote maximum DRP removal. During continuous flow operation, a 10-minute hydraulic retention time was provided for struvite precipitation. This paper discusses the design and development of the continuous flow air sparged tank reactor (ASTR) and reports on the reactor's DRP reduction capabilities on manure collected from two commercially utilized swine manure storage systems; 1) a concrete storage tank with a permeable cover, and 2) a shallow under floor pit manure collection system. Continuous flow ASTR treatment provided a 95% reduction of DRP from the covered storage tank manure and a 78% reduction of DRP from the under floor pit manure.

Comments

This proceeding is from CD-Rom Proceedings of the International Symposium on Air Quality and Waste Management for Agriculture, 16–19 September 2007 (Broomfield, CO): ASABE Publication No. 701P0907cd.

Description
Keywords
Citation
DOI
Copyright
Mon Jan 01 00:00:00 UTC 2007