Nonlinear Acoustic Properties of Structural Materials — A Review

Thumbnail Image
Date
1990
Authors
Buck, O.
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Journal Issue
Is Version Of
Versions
Series
Series
Review of Progress in Quantitative Nondestructive Evaluation
Center for Nondestructive Evaluation

Begun in 1973, the Review of Progress in Quantitative Nondestructive Evaluation (QNDE) is the premier international NDE meeting designed to provide an interface between research and early engineering through the presentation of current ideas and results focused on facilitating a rapid transfer to engineering development.

This site provides free, public access to papers presented at the annual QNDE conference between 1983 and 1999, and abstracts for papers presented at the conference since 2001.

Department
Abstract

One of the most obvious manifestations of the nonlinear stress-strain relation in elastic solids is the existence of thermal expansion due to a non-parabolic atomic potential. From the acoustic point of view, this nonlinearity immediately explains a variety of observations such as stress effects on the sound propagation velocities and acoustic harmonic generation, which is basically a distortion of the wave. Additional nonlinearities come about due to dislocation motion, or the initiation of plastic flow, and the nucleation of a new phase, such as in the case of a martensitic transformation, e.g. Other examples are nonlinear acoustic effects that are induced at free and internal surfaces caused for a variety of reasons. Detailed acoustic experiments on these phenomena have been made over the past forty years but the ideas have not been applied seriously in NDE. The present paper is a short review of work, some of which this author has been involved in. The objective is to show the utility of nonlinear acoustics for NDE of structural materials.

Comments
Description
Keywords
Citation
DOI
Copyright
Mon Jan 01 00:00:00 UTC 1990