Thermal isomerization and decomposition of ethynyldisilanes

Thumbnail Image
Date
1992
Authors
Petrich, Scott
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Chemistry

The Department of Chemistry seeks to provide students with a foundation in the fundamentals and application of chemical theories and processes of the lab. Thus prepared they me pursue careers as teachers, industry supervisors, or research chemists in a variety of domains (governmental, academic, etc).

History
The Department of Chemistry was founded in 1880.

Dates of Existence
1880-present

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Chemistry
Abstract

Co-pyrolysis of ethynylpentamethyldisilane with 2,3-dimethylbutadiene afforded trimethylsilylacetylene, dimethylsily(trimethylsilyl)acetylene and 1,1,3,4-tetramethyl-1-silacyclopent-3-ene. When an alkyl or trimethylsilyl substituted ethynyl group was pyrolyzed, extrusion of dimethylsilylene was the only decomposition process observed with no isomerization. The decomposition and isomerization pathways were proposed to proceed via a silacyclopropene intermediate. Arrhenius parameters were determined for these processes by using a pulse stirred-flow reactor. The substitution on the silacyclopropene intermediate determined which pathway would be favored. When a good migrating group was on the silicon in the silacyclopropene, a vinylsilylene intermediate was also involved. The decomposition via a silacyclopropene competed with an [alpha]-elimination when both were possible;Pyrolysis of ethynylundecamethylcyclohexasilane afforded the ring-expanded isomer 3-hydridoundecamethylhexasilacyclooctyne and decamethylpentasilacycloheptyne. Pyrolysis of 4,4,5,5,6,6,7,7,8,8-decamethyl-4,5,6,7,8-pentasilacyclooctyne afforded ring-contracted isomer 1,1-penta(dimethylsilylene)propadiene, 4,4,5,5,6,6,7,7-octamethyl-4,5,6,7-tetrasilacycloheptyne, 1, and 1,1-tetra(dimethylsilylene)propadiene, 2. Cycloheptyne 1 was also pyrolyzed and afforded propadiene 2 as the only product. Several mechanisms were proposed for these decompositions and isomerizations. The pathways involving a loss of dimethylsilylene were proposed to proceed through a silacyclopropene intermediate. The isomerizations were proposed to go through a cyclopropene intermediate;Bis (1,3-tetra(dimethylsilylene)) propadiene, 3, was synthesized from cycloheptyne 1 in 20% yield. An x-ray structure of the smallest "betweenallene", 3, was determined. The propadiene carbons were linear and twisted 18 degrees towards planarity. Pyrolysis of propadiene 3 afforded isomer 1,1-3,3-bis(tetra(dimethylsilylene)) propadiene as the only observed product. The proposed mechanism involved cyclopropene intermediates.

Comments
Description
Keywords
Citation
Source
Subject Categories
Copyright
Wed Jan 01 00:00:00 UTC 1992