Collapse of the Kondo state and ferromagnetic quantum phase transition in YbFe 2Zn 20

Thumbnail Image
Kaluarachchi, Udhara
Xiang, Li
Ying, Jianjun
Kong, Tai
Struzhkin, Viktor
Gavriliuk, Alexander
Bud’ko, Sergey
Canfield, Paul
Major Professor
Committee Member
Journal Title
Journal ISSN
Volume Title
Canfield, Paul
Distinguished Professor
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Physics and Astronomy
Physics and astronomy are basic natural sciences which attempt to describe and provide an understanding of both our world and our universe. Physics serves as the underpinning of many different disciplines including the other natural sciences and technological areas.
Journal Issue
Is Version Of
Ames National LaboratoryPhysics and Astronomy

We present the electrical resistivity data under application of pressures up to ∼26 GPa and down to 50 mK on YbFe2Zn20. We find a pressure induced magnetic phase transition with an onset at pc=18.2±0.8 GPa. At ambient pressure, YbFe2Zn20 manifests a heavy fermion, nonmagnetic ground state and the Fermi liquid behavior at low temperatures. As pressure is increased, the power law exponent in resistivity, n, deviates significantly from Fermi liquid behavior and tends to saturate with n=1 near pc. A pronounced resistivity maximum Tmax, which scales with the Kondo temperature, is observed. Tmax decreases with increasing pressure and flattened out near pc indicating the suppression of Kondo exchange interaction. For p>pc,Tmax shows a sudden upward shift, most likely becoming associated with crystal electric field scattering. Application of magnetic field for p>pcbroadens the transition and shifts it toward the higher temperature, which is a typical behavior of a transition towards a ferromagnetic state, or a state with a significant ferromagnetic component. The magnetic transition appears to abruptly develop above pc, suggesting probable first-order (with changing pressure) nature of the transition; once stabilized, the ordering temperature does not depend on pressure up to ∼26 GPa. Taken as a whole, these data suggest that YbFe2Zn20 has a quantum phase transition at pc=18.2 GPa associated with the avoided quantum criticality in metallic ferromagnets.