Thermodynamic and kinetic analysis of the melt spinning process of Fe-6.5 wt.% Si alloy
Date
Authors
Ouyang, Gaoyuan
Ma, Tao
Macziewski, Chad
Levitas, Valery
Zhou, Lin
Kramer, Matthew
Cui, Jun
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Journal Issue
Series
Department
Abstract
The microstructural evolution of Fe-6.5 wt.% Si alloy during rapid solidification was studied over a quenching rate of 4 × 104 K/s to 8 × 105 K/s. The solidification and solid-state diffusional transformation processes during rapid cooling were analyzed via thermodynamic and kinetic calculations. The Allen-Cahn theory was adapted to model the experimentally measured bcc_B2 antiphase domain sizes under different cooling rates. The model was calibrated based on the experimentally determined bcc_B2 antiphase domain sizes for different wheel speeds and the resulting cooling rates. Good correspondence of the theoretical and experimental data was obtained over the entire experimental range of cooling rates. Along with the asymptotic domain size value at the infinite cooling rates, the developed model represents a reliable extrapolation for the cooling rate > 106 K/s and allows one to optimize the quenching process.