Collapsed tetragonal phase transition in LaRu2P2

Date
2017-11-01
Authors
Goldman, Alan
Drachuck, Gil
Sapkota, Aashish
Jayasekara, Wageesha
Canfield, Paul
Kothapalli, Karunakar
Bud’ko, Sergey
Goldman, Alan
Kreyssig, Andreas
Canfield, Paul
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Ames Laboratory
Organizational Unit
Physics and Astronomy
Organizational Unit
Journal Issue
Series
Department
Ames LaboratoryPhysics and Astronomy
Abstract

The structural properties of LaRu2P2 under external pressure have been studied up to 14 GPa, employing high-energy x-ray diffraction in a diamond-anvil pressure cell. At ambient conditions, LaRu2P2 (I4/mmm) has a tetragonal structure with a bulk modulus of B=105(2) GPa and exhibits superconductivity at Tc=4.1 K. With the application of pressure, LaRu2P2 undergoes a phase transition to a collapsed tetragonal (cT) state with a bulk modulus of B=175(5) GPa. At the transition, the c-lattice parameter exhibits a sharp decrease with a concurrent increase of the a-lattice parameter. The cT phase transition in LaRu2P2 is consistent with a second-order transition, and was found to be temperature dependent, increasing from P=3.9(3) GPa at 160 K to P=4.6(3) GPa at 300 K. In total, our data are consistent with the cT transition being near, but slightly above 2 GPa at 5 K where superconductivity is suppressed. Finally, we compare the effect of physical and chemical pressure in the RRu2P2 (R = Y, La–Er, Yb) isostructural series of compounds and find them to be analogous.

Comments
Description
Keywords
Citation
DOI
Collections