Doping evolution of the anisotropic upper critical fields in the iron-based superconductor Ba1−xKxFe2As2

Date
2017-11-01
Authors
Tanatar, Makariy
Liu, Yong
Jaroszynski,, J.
Brooks, J.
Lograsso, Thomas
Lograsso, Thomas
Prozorov, Ruslan
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Ames Laboratory
Organizational Unit
Physics and Astronomy
Organizational Unit
Journal Issue
Series
Department
Ames LaboratoryPhysics and AstronomyMaterials Science and Engineering
Abstract

In-plane resistivity measurements as a function of temperature and magnetic field up to 35 T with precise orientation within the crystallographic ac plane were used to study the upper critical field Hc2 of the hole-doped iron-based superconductor Ba1−xKxFe2As2. Compositions of the samples studied spanned from under- doped x=0.17 (Tc=12 K) and x=0.22 (Tc=20 K), both in the coexistence range of stripe magnetism and superconductivity, through optimal doping x=0.39 (Tc=38.4 K) and x=0.47 (Tc=37.2 K), to overdoped x=0.65 (Tc=22 K) and x=0.83 (Tc=10 K). We find notable doping asymmetry of the shapes of the anisotropic Hc2(T), suggesting the important role of paramagnetic limiting effects in the H∥a configuration in overdoped compositions and multiband effects in underdoped compositions.

Comments
Description
Keywords
Citation
DOI
Collections