Valorization of Sewage Sludge via Gasification and Transportation of Compressed Syngas

Thumbnail Image
Mysior, Marek
Tomaszewski, Maciej
Stepien, Paweł
Białowiec, Andrzej
Major Professor
Committee Member
Journal Title
Journal ISSN
Volume Title
Koziel, Jacek
Professor Emeritus
Research Projects
Organizational Units
Organizational Unit
Organizational Unit
Civil, Construction and Environmental Engineering

The Department of Civil, Construction, and Environmental Engineering seeks to apply knowledge of the laws, forces, and materials of nature to the construction, planning, design, and maintenance of public and private facilities. The Civil Engineering option focuses on transportation systems, bridges, roads, water systems and dams, pollution control, etc. The Construction Engineering option focuses on construction project engineering, design, management, etc.

The Department of Civil Engineering was founded in 1889. In 1987 it changed its name to the Department of Civil and Construction Engineering. In 2003 it changed its name to the Department of Civil, Construction and Environmental Engineering.

Dates of Existence

Historical Names

  • Department of Civil Engineering (1889-1987)
  • Department of Civil and Construction Engineering (1987-2003)
  • Department of Civil, Construction and Environmental Engineering (2003–present)

Related Units

Organizational Unit
Agricultural and Biosystems Engineering

Since 1905, the Department of Agricultural Engineering, now the Department of Agricultural and Biosystems Engineering (ABE), has been a leader in providing engineering solutions to agricultural problems in the United States and the world. The department’s original mission was to mechanize agriculture. That mission has evolved to encompass a global view of the entire food production system–the wise management of natural resources in the production, processing, storage, handling, and use of food fiber and other biological products.

In 1905 Agricultural Engineering was recognized as a subdivision of the Department of Agronomy, and in 1907 it was recognized as a unique department. It was renamed the Department of Agricultural and Biosystems Engineering in 1990. The department merged with the Department of Industrial Education and Technology in 2004.

Dates of Existence

Historical Names

  • Department of Agricultural Engineering (1907–1990)

Related Units

Journal Issue
Is Version Of

A significant challenge in the utilization of alternative gaseous fuels is to use their energy potential at the desired location, considering economic feasibility and sustainability. A potential solution is a compression, transportation in pressure tanks, and generation of electricity and heat directly at the recipient. In this research, the potential for generating syngas from abundant waste substrates was analyzed. The sewage sludge (SS) was used as an example of a bulky and abundant resource that could be valorized via gasification, compression, and transport to end-users in containers. A model was developed, and theoretical analyses were completed to examine the influence of the calorific value of the syngas produced from the SS gasification (under different temperatures and gasifying agents) on the efficiency of energy transportation of compressed syngas. First, the gasification simulation was carried out, assuming equilibrium in a downdraft gasifier (reactor) from 973–1473 K and five gasifying agents (O2, H2, CO2, water vapor, and air). Molar ratios of the gasifying agents to the (SS) C ranged from 0.1–1.0. The model predicted syngas composition, lower calorific values (LHV) for a given molar ratio of the gasification agent, and compressibility factor. It was shown that the highest LHV was obtained at 0.1 molar ratio for all gasifier agents. The highest LHV (~20 MJ∙(Nm3)−1) was obtained by gasification with H2 and the lowest (~13 MJ∙(Nm3)−1) in the case of air. Next, the available syngas volume in a compressed gas transportation unit and the stored energy was estimated. The largest syngas volume can be transported when O2 is used as a gasifying agent, but the highest amount of transported energy was estimated for gasification with H2. Finally, the techno-economic analyses showed that syngas from SS could be competitive when the energy of compressed syngas is compared with the demand of an average residential dwelling. The developed syngas energy transport system (SETS) concept proposes a new method to distribute compressed syngas in pressure tanks to end-users using all modes of transport carrying intermodal ISO containers. Future work should include the determination of energy demand for syngas compression, including pressure losses, heat losses, and analysis of the influence of syngas on storage and compression devices.


This article is published as Mysior, Marek, Maciej Tomaszewski, Paweł Stępień, Jacek A. Koziel, and Andrzej Białowiec. "Valorization of Sewage Sludge via Gasification and Transportation of Compressed Syngas." Processes 7, no. 9 (2019): 556. DOI: 10.3390/pr7090556. Posted with permission.

Tue Jan 01 00:00:00 UTC 2019