Superconductivity versus structural phase transition in the closely related Bi2Rh3.5S2 and Bi2Rh3S2

Date
2015-05-01
Authors
Lin, Qisheng
Canfield, Paul
Kaluarachchi, Udhara
Xie, Weiwei
Lin, Qisheng
Taufour, Valentin
Bud'ko, Sergey
Miller, Gordon
Miller, Gordon
Canfield, Paul
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Ames Laboratory
Organizational Unit
Journal Issue
Series
Department
Ames Laboratory
Abstract

Single crystals of Bi2Rh3S2 and Bi2Rh3.5S2 were synthesized by solution growth, and the crystal structures and thermodynamic and transport properties of both compounds were studied. In the case ofBi2Rh3S2, a structural first-order transition at around 165 K is identified by single-crystal diffraction experiments, with clear signatures visible in resistivity, magnetization, and specific heat data. No superconducting transition for Bi2Rh3S2 was observed down to 0.5 K. In contrast, no structural phase transition at high temperature was observed for Bi2Rh3.5S2; however, bulk superconductivity with a critical temperature, Tc≈1.7 K, was observed. The Sommerfeld coefficient γ and the Debye temperature (ΘD) were found to be 9.41 mJ mol−1K−2 and 209 K, respectively, for Bi2Rh3S2, and 22 mJ mol−1K−2 and 196 K, respectively, for Bi2Rh3.5S2. Study of the specific heat in the superconducting state of Bi2Rh3.5S2 suggests that Bi2Rh3.5S2 is a weakly coupled, BCS superconductor.

Comments

This article is from Physical Review B 91 (2015): 174513, doi:10.1103/PhysRevB.91.174513. Posted with permission.

Description
Keywords
Citation
DOI
Collections