In situ TEM observation on the ferroelectric-antiferroelectric transition in Pb(Nb,Zr,Sn,Ti)O3/ZnO

Thumbnail Image
Date
2022-02
Authors
Liu, Binzhi
Li, Ling
Zhang, Shan-Tao
Zhou, Lin
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Wiley and The American Ceramic Society
Authors
Research Projects
Organizational Units
Organizational Unit
Materials Science and Engineering
Materials engineers create new materials and improve existing materials. Everything is limited by the materials that are used to produce it. Materials engineers understand the relationship between the properties of a material and its internal structure — from the macro level down to the atomic level. The better the materials, the better the end result — it’s as simple as that.
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Journal Issue
Is Version Of
Versions
Series
Department
Materials Science and EngineeringAmes National Laboratory
Abstract
Ceramic composites of (1-x)Pb0.99{Nb0.02[(Zr0.57Sn0.43)0.937Ti0.063]0.98}O3 (PNZST)/xZnO were recently reported to exhibit exceptionally high pyroelectric coefficients near human body temperature due to the ferroelectric-antiferroelectric transition of the matrix grains. In the present work, a comparative study is conducted on two composites of x = 0.1 and 0.4 with in situ heating transmission electron microscopy (TEM). The results verify the presence of strain field in the PNZST grain adjacent to a ZnO particle and the stabilized ferroelectric phase at room temperature in the composite of x = 0.1. During heating, the ferroelectric matrix grain transforms to the antiferroelectric phase, contributing to the pyroelectric effect. In the composite of x = 0.4, high-angle annular dark-field imaging combined with energy-dispersive X-ray spectroscopy reveal the existence of both ZnO and Zn2SnO4. The formation of Zn2SnO4 indicates that Sn in the PNZST matrix grain is selectively extracted, and decomposition of the perovskite phase has taken place. The decomposition products in the form of fine particles are observed to facilitate the nucleation of the antiferroelectric phase and restrict the motion of the phase boundary during heating. The larger amount of ZnO and Zn2SnO4 and the decomposition of the PNZST perovskite phase are suggested to be responsible for the much lower pyroelectric coefficient in the x = 0.4 composite.
Comments
This is the peer-reviewed version of the following article: Liu, Binzhi, Ling Li, Shan‐Tao Zhang, Lin Zhou, and Xiaoli Tan. "In situ TEM observation on the ferroelectric‐antiferroelectric transition in Pb (Nb, Zr, Sn, Ti) O3/ZnO." Journal of the American Ceramic Society 105, no. 2 (2022): 794-800, which has been published in final form at DOI: 10.1111/jace.18148. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. Copyright 2021 The American Ceramic Society. Posted with permission.
Description
Keywords
Citation
DOI
Subject Categories
Copyright
Collections