Methods of Test for Concrete Permeability: A Critical Review

Thumbnail Image
File
Date
2021-04-08
Authors
Cavalline, Tara L.
Rupnow, Tyson D.
Melugiri-Shankaramurthy, Bharath
Lomboy, Gilson
Wang, Kejin
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
ASTM International
Authors
Person
Wang, Kejin
Professor
Research Projects
Organizational Units
Journal Issue
Is Version Of
relationships.hasVersion
Series
Department
Civil, Construction and Environmental Engineering
Abstract
The transport of liquids, gasses, and aggressive agents into concrete is responsible for a variety of durability issues. To obtain the low-permeability concrete required for long-lasting, sustainable infrastructure, stakeholders desire the ability to specify concrete based upon the permeability rating for specific uses. The mechanisms of moisture ingress into concrete are complex phenomena, and they are highly dependent on materials, mixture characteristics, curing conditions, and other factors. This review article provides an overview of the available permeability test methods and identifies existing gaps in the current field and knowledge. It discusses the mechanisms and key factors influencing moisture movement within concrete (capillary suction, absorption, water, and gas permeability) and outlines the procedures, advantages, and limitations of available permeability test methods. Despite a variety of tests available for water permeability, widespread acceptance for use of a single (or even a few) tests has not been achieved. No clear link exists between these tests and acceptable field performance. Additionally, several tests are viewed as problematic from a time, cost, or variability standpoint. Therefore, improved rapid permeability tests are needed to provide a pathway for agencies to move toward performance specifications with confidence. Recommendations regarding future work to support the development of improved test methods and, potentially, a model that would predict moisture ingress based on electrical resistivity, are also presented.
Comments
This article is published as Milla, Jose, Tara L. Cavalline, Tyson D. Rupnow, Bharath Melugiri-Shankaramurthy, Gilson Lomboy, and Kejin Wang. "Methods of Test for Concrete Permeability: A Critical Review." Advances in Civil Engineering Materials 10, no. 1 (2021): 172-209. DOI: 10.1520/ACEM20200067. Copyright 2021 ASTM Int'l. Posted with permission.
Description
Keywords
permeability, concrete durability, transport properties, chloride ion ingress
Citation
DOI
Copyright
Collections