The formation of α-(1[right-facing arrow]3) D-glucosidic linkages by exocellular α-D-glucansucrases from Leuconostoc mesenteroides and Streptococcus mutans

Thumbnail Image
Date
1983
Authors
Côté, Gregory
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Biochemistry, Biophysics and Molecular Biology

The Department of Biochemistry, Biophysics, and Molecular Biology was founded to give students an understanding of life principles through the understanding of chemical and physical principles. Among these principles are frontiers of biotechnology such as metabolic networking, the structure of hormones and proteins, genomics, and the like.

History
The Department of Biochemistry and Biophysics was founded in 1959, and was administered by the College of Sciences and Humanities (later, College of Liberal Arts & Sciences). In 1979 it became co-administered by the Department of Agriculture (later, College of Agriculture and Life Sciences). In 1998 its name changed to the Department of Biochemistry, Biophysics, and Molecular Biology.

Dates of Existence
1959–present

Historical Names

  • Department of Biochemistry and Biophysics (1959–1998)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Biochemistry, Biophysics and Molecular Biology
Abstract

Alternansucrase, an exocellular glucansucrase from Leuconostoc mesenteroides NRRL B-1355, which synthesizes an alternating (alpha)-(1(--->)3), (alpha)-(1(--->)6)-D-glucan from sucrose, was isolated from the culture supernatant fluid of cultures of this organism. The most effective method for accomplishing this was hydrophobic chromatography on phenoxyacetyl cellulose. Alternansucrase was shown to synthesize alternan and to form both (alpha)-(1(--->)6) and (alpha)-(1(--->)3) glucosidic bonds by acceptor reactions with low-molecular-weight saccharides in the presence of sucrose, but an (alpha)-(1(--->)3) bond was synthesized only when an (alpha)-(1(--->)6) glucosidic bond was present at the nonreducing end of the acceptor. Acceptor reactions occurred by transfer of glucosyl units from sucrose to the nonreducing ends of oligosaccharide acceptors;A mixture of two exocellular glucansucrases from L. mesenteroides NRRL B-742 was found to be capable of transferring glucosyl units from sucrose to L. mesenteroides B-512F dextran, to form (alpha)-(1(--->)3) branch linkages via acceptor reactions. It was demonstrated that only one of the two glucansucrases present in the mixture was responsible for these branching reactions; this enzyme is a dextransucrase which forms a dextran having an (alpha)-(1(--->)6) backbone chain with a high percentage of single glucosyl branches linked (alpha)-(1(--->)3) to the main chain. This percentage of branch points can vary, depending on the conditions under which the dextran is synthesized;A glucansucrase from Streptococcus mutans 6715, which produces a highly branched, water-soluble dextran, was found to be capable of forming (alpha)-(1(--->)3) branch linkages in the same manner as the B-742 S dextransucrase, i.e., by acceptor reactions with relatively unbranched dextran, such as that from L. mesenteroides B-512F. This streptococcal dextransucrase was stimulated by the addition of exogenous dextrans. The stimulation was greatest with relatively unbranched dextrans, while more highly branched dextrans were less effective in their ability to stimulate S. mutans 6715 dextransucrase. Other (alpha)-D-glucans, such as glycogen, pullulan, and alternan, did not stimulate;The dextransucrase from S. mutans 6715 was able to utilize alternate glucosyl donors, such as dextran, maltotriose, panose, and isomaltodextrins containing three or more glucose units, in what could be considered the reverse of acceptor reactions.

Comments
Description
Keywords
Citation
Source
Subject Categories
Copyright
Sat Jan 01 00:00:00 UTC 1983